

58
Minimikontekstinhallinnan määrittely – versio 3.0

Minimikontekstinhallinnan määrittely
Versio 3.0

	
	HL7 Finland ry

	
	OID: 1.2.246.777.11.2006.13

	31.1.2006
	Version 3.0

Sisällys
1	Työpöytäintegraatio	6
2	Minimikontekstinhallinnan määrittely	7
2.1	Taustaa	7
2.2	Minimikontekstinhallinta	7
3	Konteksti	9
4	Subjektit	10
4.1	Subjektien nimeäminen	10
4.2	Kontekstidatan tietotyypit	10
4.3	Kontekstidataan sisältyvien erikoismerkkien koodaaminen	11
4.4	Subjektien käyttäminen	12
4.5	Minimitoteutuksen subjektit	13
4.5.1	Käyttäjä-subjekti	13
4.5.2	Potilas-subjekti	14
4.5.3	Custom Subjects	15
4.5.4	Subjektit ja turvallisuus	16
5	Sessionhallinta ja identifioiminen	17
5.1	Sessionhallinta	17
5.2	Sovellusten identifiointi	17
5.3	Työaseman identifiointi	18
6	Minimitoteutuksessa tarvittavat rajapinnat	19
6.1	Rajapintojen, metodien, parametrien ja subjektien nimeäminen	19
6.1.1	Rajapinnat	19
6.1.2	Metodit	19
6.1.3	Parametrit	19
6.1.4	Poikkeukset	19
6.1.5	Subjektit	19
6.2	ContextManager-rajapinta (kontekstin luominen, kontekstinhallintaan liittyminen ja siitä eroaminen)	20
6.2.1	CreateSession	20
6.2.2	JoinCommonContext	21
6.2.3	LeaveCommonContext	24
6.3	CD (ContextData-rajapinta, kontekstitiedon käsittely)	24
6.3.1	SetItemValues	24
6.3.2	GetItemValues	26
6.4	Rajapintojen käyttöesimerkkejä	28
6.4.1	Kontekstin luominen, kontekstinhallintaan liittyminen ja kontekstin asettaminen	28
6.4.2	Kontekstinhallintaan liittyminen ja kontekstin hakeminen	29
6.4.3	Kontekstinhallinnasta eroaminen	30
6.5	Kontekstin tietosisällön käsittelyssä huomioitavaa	30
6.5.1	Potilaskontekstin muutos	31
6.5.2	Käyttäjäkontekstin muutos	31
7	Tietoturva	33
7.1	Huomioitavat kohdat työpöytäintegraation tietoturvassa	33
7.1.1	Työpöytäintegraation liittyvien järjestelmien ja kontekstipalvelun välisen liikenteen tietoturva	33
7.1.2	Kontekstin luominen CreateSession-metodilla	35
7.1.3	Kontekstin luominen JoinCommonContext-metodin yhteydessä	35
7.1.4	Sessioavaimen välittäminen	35
7.1.5	Kontekstiin liittyminen	35
7.1.6	Oikeudet hakea ja asettaa kontekstietoja	35
7.1.7	Käyttäjätunnuksen asettaminen kontekstiin & luotettu sovellus	36
7.1.8	Kontekstin tuhoaminen	36
7.1.9	Sessioavaimen yksilöllisyys	36
7.1.10	Käyttäjätunnuksen yksilöllisyys	36
7.1.11	Sovellustunnusten yksilöllisyys	37
7.2	Työpöytäintegraation tietoturvariskit	37
7.2.1	Osapuolten identiteetti	37
7.2.2	Tiedon eheys	37
7.2.3	Liikenteen salaus	38
7.3	Tietoturvaratkaisu	38
8	Palvelinpohjainen kontekstinhallinta	41
8.1	Arkkitehtuuri	41
8.2	Tekniikka	42
8.3	Tietoturva	43
8.4	Pollaukset	43
8.5	Metodit http-viesteillä	43
8.5.1	HTTP GET / POST-viestit	43
8.5.2	MIME-header	44
8.5.3	Http-kutsun muodostaminen	44
8.5.4	Paluuarvon muodostaminen	45
8.5.5	Poikkeukset	45
8.6	CM (ContextManager-rajapinta)	45
8.6.1	CreateSession	46
8.6.2	JoinCommonContext	47
8.6.3	JoinCommonContextWithIp	48
8.6.4	LeaveCommonContext	49
8.7	CD (ContextData-rajapinta)	49
8.7.1	SetItemValues	49
8.7.2	GetItemValues	50
9	Alueellinen kontekstinhallinta	51
9.1	Alueellisen kontekstinhallinnan osapuolet	51
9.1.1	Kontekstipalvelin	51
9.1.2	Organisaation sisäinen, kontekstin luova järjestelmä	51
9.1.3	Organisaation ulkopuolinen järjestelmä	51
9.1.4	Organisaation sisäinen, kontekstiin liittyvä sovellus	52
9.2	Alueellisen käytön erityisvaatimuksia	52
9.2.1	Monta kontekstipalvelinta	52
9.2.2	Sessioavainten yksilöllisyys	52
9.2.3	Käyttäjätunnuksen yksilöllisyys	53
9.2.4	Sovellustunnusten yksilöllisyys	53
9.3	Alueellisen kontekstinhallinnan vaiheet	53
9.3.1	Kontekstin luominen, liittyminen kontekstiin ja kontekstin asettaminen	54
9.3.2	Selainkäyttöisen aluejärjestelmän käynnistäminen ja liittyminen kontekstiin	55
9.3.3	Aluejärjestelmä kontekstin hyödyntäjänä	56
9.3.4	Järjestelmien rinnakkainen käyttö	56
9.3.5	Järjestelmien sulkeminen	57
9.4	Sessioavaimen välittäminen	58

LIITTEET

Liite 1. Minimitoteutuksen erot CCOW-standardiin.

Liite 2. Lista jatkokehitysehdotuksista.
Versiohistoria
	Versio:
	Pvm:
	Laatijat:
	Selitys:

	Pohjadokumentit
	21.11.2005
	Mika Tuomainen (MT)
	Minimikontekstinhallinnan määrittely, väliversio 2.1.1 ja Tietoturvallinen kontekstinhallinta -soveltamisohje, versio 1.

	v2.91
	29.11.2005
	MT, Tommi Rissanen (TR)
	Lisätty yleisluku työpöytäintegraatiosta.

Lisätty CreateSession-metodi ContextManager-rajapintaan ja päivitetty sen seurauksena vaikutukset dokumentin muihin kohtiin.

Lisätty erillinen tietoturvaluku.

Lisätty erillinen luku 9 alueellisesta kontekstinhallinnasta (Tommi Rissanen).

Liitetty yleisluku kontekstinhallinnan toiminnoista lukuun, jossa käydään läpi rajapinnat tekniikkariippumattomalla tasolla.

Termi Context manager on korvattu läpi dokumentin termillä koordinaattori.

Käyttäjäsubjekti
- suositus ettei subjektin arvoissa käytetä erikoismerkkejä
- lisätty tarkennusta geneerinen id -käsitteeseen ja tarkennettu, ettei koordinaattori vastaa käyttäjätunnusten vastaavuustaulukoinnista

Potilassubjekti
- suositus ettei subjektin arvoissa käytetä erikoismerkkejä

SetItemValues-metodin yhteyteen maininta, että kontekstitiedoille voidaan antaa erilaisia sovelluskohtaisia asetusoikeuksia toteutuskohtaisesti.

GetItemValues-metodin yhteyteen maininta, että kontekstitiedoille voidaan antaa erilaisia sovelluskohtaisia hakuoikeuksia toteutuskohtaisesti.

Rajapintojen eri virhetilanteita kuvattu osin tarkemmin GeneralFailure kohtiin.

Poistettu sessionhallinta-luku http-teknisistä määrityksistä ja liitetty se omaan sessionhallintalukuun.

Kuvattu ratkaisua pollaukseen yleisellä tasolla.

	Luonnos v2.95
	30.11.2005
	MT
	Kontekstinhallintamäärityksen v3:n luonnos kommentoitavaksi 12.12.2005 Common Services SIG:iin.

	Versio 2.96
	19.12.2006
	MT, TR
	Kontekstinhallinnan määrittelyn v3:n lausuntokierrosversio v2.96.

Huomioitu CS SIG:issä 12.12.2005 käsitellyt kohdat:
- lisätty tietoturvalukuun kappale sovellus- ja käyttäjätunnusten yksilöllisyydestä
- lisätty lukuun 9 vuorovaikutuskaaviot kontekstinhallintaan liittyvistä toiminnoista.
- suositeltu käyttämään sessioavainta ja CreateSession-metodia
- suositeltu käyttämään tietoturvaratkaisua myös organisaation sisäisessä kontekstinhallinnassa

Poistettu vanhat PlugIT-viitteet, joita ei enää saatavilla.

Liitetty lukuun 2 taustaa kappale.

Lisätty liitteeksi 2 lista jatkokehitysehdotuksista.

	Versio 3.0
	24.1.2006
	
	HL7 Finland TC-käsittely, jossa todettiin HL7 jäsenäänestyksen sääntöjen
mukaisuus ja äänestyksen hyväksyvä lopputulos (20 puolesta, 0 vastaan, 3 ei kantaa).

Esitetty hyväksymistä HL7 hallitukselle.

	Versio 3.0
	31.1.2006
	
	HL7 Finland hallitus hyväksyi määrityksen.

[bookmark: _Toc122836165]
Työpöytäintegraatio

Työpöytäintegraation tavoitteena on helpottaa erillisten järjestelmien yhtäaikaista käyttöä samalla työasemalla. Esimerkiksi terveydenhuollon järjestelmissä käyttäjä joutuu tekemään useaan kertaan perusperiaatteiltaan samanlaisia toimintoja eri järjestelmissä. Näitä toimintoja ovat tyypillisesti järjestelmiin kirjautuminen ja sekä tietyn potilaan tietojen hakeminen. Työpöytäintegraatio helpottaa tätä tilannetta tarjoamalla keinot kertakirjautumisen ja yhteiseen kontekstiin siirtymisen toteuttamiseksi.

Kertakirjautumisessa (single sign-on) käyttäjän tarvitsee kirjautua vain kerran yhteen järjestelmään. Muut integraatioon kytketyt sovellukset kykenevät käyttämään hyväksi tätä kirjautumistietoa, niin ettei niihin tarvitse kirjautua erikseen.

Yhteiseen kontekstiin siirtymisen avulla käyttäjälle tarjotaan automaattinen tai helppo siirtyminen samaan potilaaseen tai muuhun käsiteltävänä olevaan asiaan eri järjestelmissä. Näin käyttäjän tarvitsee syöttää esimerkiksi potilaan tunnus ja hakea haluamansa potilaan tiedot vain yhteen järjestelmään. Muut järjestelmät voivat hakea tiedon käsiteltävästä potilaasta hyödyntäen kontekstista saatavaa potilastunnusta, ilman käyttäjän erillistä potilastunnusten syöttämistä.

[bookmark: _Toc122836166]Minimikontekstinhallinnan määrittely
[bookmark: _Toc122836167]Taustaa

Tämän määrittelyn pohjana on käytetty CCOW-standardissa (Seliger, Royer 2002) kuvattua ratkaisua työpöytäintegraation toteuttamiseen. Minimikontekstinhallinnan määrittely ei ole CCOW-standardin mukainen. CCOW-standardin ja minimikontekstinhallinta määrittelyn keskeisimmät erot on kuvattu liitteessä 1.

Minimikontekstinhallinnan määrittelyn tavoitteena on hahmottaa minimiratkaisua, jolla CCOW-tyyppinen toiminnallisuus on saavutettavissa. CCOW-standardista on pyritty löytämään vain kaikkein olennaisimmat ja hyödyllisimmät osat, joilla työpöytäintegraation perustoiminnallisuus voidaan toteuttaa.

Tässä minimikontekstinhallinnan määrittelyn versiossa 3 ovat keskeisimpinä lisäyksinä kuvattu tietoturvaratkaisu kontekstinhallintaa varten sekä esitetty kuinka alueellinen kontekstinhallinta toteutetaan. Asiasisältö on ollut pääpiirteissään mukana kontekstinhallinnan epävirallisessa väliversiossa 2.1.1 sekä Tietoturvallinen kontekstinhallinta -soveltamisohjeessa. Kontekstinhallinnan määrittelyjä on kehitetty HL7 Finlandin Common Services – SIG:issä.

[bookmark: _Toc122836168]Minimikontekstinhallinta

Minimikontekstinhallinta muodostuu koordinaattori-komponentista (context manager) ja siihen liittyneistä sovelluksista (kuva 1).

Kuva 1. Kontekstinhallinta.

Koordinaattori voi olla sovellus tai ohjelmistokomponentti, joka ohjaa eri sovellusten välistä vuorovaikutusta ja yhteistoimintaa. Kontekstinhallintaan (koordinaattoriin) liittyneet sovellukset ovat olemassa olevia sovelluksia (web/työasema). Kaikki vuorovaikutus sovellusten välillä kulkee koordinaattorin kautta, joten eri sovellusten ei tarvitse tuntea toistensa protokollia. Minimikontekstinhallinnan määrittelyn versio 3 määrittelee koordinaattorin ja sovellusten väliset rajapinnat, rajapintojen käytön, tietoturvan sekä yhteisen kontekstin tietojen nimeämisen, syntaksin ja tietotyypit. Dokumentissa esitellään sekä minimitason ratkaisu tekniikkariippumattona että web/http-tekniikalle.

[bookmark: _Toc122836169]Konteksti

Koordinaattorin tärkein tehtävä on säilyttää ja ylläpitää työasemakohtaista kontekstia, esim. tietoja viimeksi valitusta potilaasta, sisään kirjautuneesta käyttäjästä ja muista mahdollisista tiedoista, joita työpöytäintegraatiossa halutaan hyödyntää. Kontekstinhallinta perustuu ajatukselle, että terveydenhuollon sovelluksille voidaan määritellä yhteinen konteksti. Tämä yhteinen konteksti koostuu joukosta tietoja, joita voidaan käsitellä sovellusten sisäisestä toteutuksesta riippumatta samalla tavalla.

Kontekstinhallinnan minimitoteutuksen tärkeimmät tiedot liittyvät käyttäjään ja potilaaseen. Näiden tietojen avulla saadaan toteutettua toiminnallisuus, jossa integraatioon osallistuvat sovellukset voivat toteuttaa kertakirjautumisen (käyttäjä) ja seurata saman potilaan tietoja koordinoidusti eri ohjelmissa (potilas)..

Kontekstin tietosisältö on määritelty CCOW-standardin dokumentin ”Subject Data Defini-tions” (Seliger 2002b) mukaisesti tietokokonaisuuksittain, joita kutsutaan subjekteiksi (context data subject). Jokaiseen subjektiin liittyy joukko tietoja, joista jokainen muodostaa nimi-arvoparin (context item). Esimerkiksi käyttäjäsubjektista voisi löytyä seuraava tieto, joka vastaa käyttäjätunnusta:

 (
”User.ID.Logon”
(nimiosa)
”MattiM”
(arvo)
sdf
)

[bookmark: _Toc122836170]Subjektit

Tässä luvussa käydään läpi, kuinka subjektit nimetään, mitä tietotyyppejä subjekteille voidaan antaa, kuinka niitä käytetään sekä mitä subjektien käytössä tulee ottaa huomioon. Lisäksi esitellään User-, Patient- ja custom-subjektit.

[bookmark: _Toc122836171]Subjektien nimeäminen

Minimikontekstinhallinnan subjektien nimeäminen ja syntaksi määritellään CCOW-standardin dokumentin ”Subject Data Definitions” (Seliger 2002b) mukaisesti. Syntaksi on yhteinen kaikille subjekteille. Kaikki subjektit nimetään seuraavan säännön mukaisesti:

 (
Subject_label
.
role
.
Name_prefix
.optional_name_suffix
)

Jokainen osa erotetaan toisistaan pisteellä ja jokaisella osalla on oma tarkoituksensa:

· Subject_label: Ilmaisee subjektin, johon tieto kuuluu, esim. Patient.
role: Kertoo tiedon ”roolin”. Minimitason kontekstinhallintaratkaisussa on määritelty rooleiksi:
Id = identifier data. Tieto, jota käytetään jonkin todellisen entiteetin tunnistamiseen, esim. yksilöllinen potilastunnus.
Co = corroborating data. Id-tyypin tietoa vahvistava tieto, joka on riippuvainen id-tyypin tiedosta. Esimerkiksi potilaan etunimi, joka ei ole yksilöivä tieto, mutta joka kuitenkin käytännössä helpottaa hänen tunnistamistaan.
An = annotating data. Lisätietoa, joka on riippuvainen jostakin id-tyypin tiedosta.
CCOW-standardissa on määritelty myös muita tiedon ”rooleja” (Seliger 2002b).
· Name_prefix. Tiedon varsinainen nimi, ilmaisee mitä tieto tarkoittaa, esimerkiksi Logon (= kirjautumistieto).
Optional_name_suffix. Tämä ei ole pakollinen kenttä. Kenttä toimii varsinaisen nimen lisätarkentimena, jonka tarkoituksena on mahdollistaa se, että useampi kuin yksi tieto voi kuvata samaa loogista käsitettä. Suffix-osan avulla on mahdollista erottaa eri järjestelmien käyttämät subjektien arvot, jos ne poikkeavat toisistaan. Esim. CCOW-standardissa käytetään tässä kentässä sovelluksen nimeä erottamaan saman käyttäjän eri käyttäjätunnukset eri sovelluksissa (Seliger 2002b).

[bookmark: _Toc122836172]Kontekstidatan tietotyypit

Kontekstidatan tietotyyppeinä on käytettävä CCOW-standardin mukaisia taulukon 1 mukaisia HL7 tietotyyppejä. Käytännössä tämä tarkoittaa myös sitä, että käytetään HL7:n rakenteista tiedon esittämistapaa. Jos myöhemmin tulee tarve muillekin HL7 tietotyypeille, on ne käsiteltävä erikseen Common Services SIG:issä ja lisättävä seuraaviin määrittelyn versioihin.

Taulukko 1. CCOW-standardissa käytettävät HL7 tietotyypit (HL7 version 2.5 mukaiset, Seliger 2002b).

	Data Type
	Data Type Name
	HL7 Section Reference

	CX
	Extended composite ID with check digit
	2.9.12

	EI
	Entity Identifier
	2.9.17

	HD
	Hierarchic Designator
	2.9.21

	ID
	Code Value for HL7-Defined Table
	2.9.22

	IS
	Coded Value For User Defined Table
	2.9.23

	ST
	String
	2.9.43

	NM
	Numeric
	2.9.28

	XPN
	Extended Person Name
	2.9.54

	XAD
	Extended Address
	2.9.51

	XTN
	Extended Phone Number
	2.9.55

	DLN
	Driver’s License Number
	2.9.13

	DT
	Date
	2.9.15

	TS
	Time Stamp
	2.9.47

Taulukossa 2 esimerkki CCOW-standardissa määritellystä tiedosta, joka esitetään rakenteisessa muodossa:

Taulukko 2. Esimerkki tiedosta, sen tietotyypistä ja rakenteisesta esityksestä.

	Tieto
	Tietotyyppi
	Rakenteinen esitys

	Patient.Co.PatientName (potilaan nimi)	
	XPN
	Tuomainen^Mika^^^^

[bookmark: _Toc122836173]Kontekstidataan sisältyvien erikoismerkkien koodaaminen

HL7 rakenteisten tietotyyppien käyttö kontekstidatan tietotyyppeinä edellyttää erotinmerkkien käyttämistä tiedon eri osien erottamiseen. CCOW-standardissa on mainittu sallituiksi erotinmerkeiksi ainoastaan merkit |, ^ ja &. Nämä erotinmerkit on kuvattu HL7 version 2.5-dokumentissa (Health Level Seven 2003). HL7 Version 2.5 -dokumentissa on kuvattu myös muita erotinmerkkejä. Common Services SIG:issä ei ole nähty estettä, miksei minimikontekstinhallinnan määrittelyssä voida käsitellä myös muista erotinmerkkejä ja varsinkin kenoviivan (”\”) koodaaminen on katsottu tarpeelliseksi. Näin minimikontekstinhallinnan määrittelyssä ovat mukana kaikki taulukossa 3 kuvatut erotinmerkit.

Taulukko 3. Erotinmerkit ja näiden escape-sekvenssit (Health Level Seven, 2003))

	Erotinmerkki
	Escape-sekvenssi

	field separator (|)
	\F\

	component separator (^)
	\S\

	subcomponent separator (&)
	\T\

	repetition separator (~)
	\R\

	escape character (\)
	\E\

Jotta rakenteisessa datassa olevat erotinmerkit eivät menisi sekaisin datassa olevien vastaavien erikoismerkkien kanssa, on datassa olevat erikoismerkit koodattava escape-sekvensseillä. Taulukossa 3 on kuvattu HL7 Version 2.5 escape-sekvenssit.

Taulukon 3 erotinmerkit on koodattava escape-sekvensseillä:
· aina, kun merkit ovat datana ST tietotyypissä
· silloin, kun merkit ovat muissa tietotyypeissä rakenteisen tiedon arvoina, eivät erottimina rakenteisessa tiedossa.

Taulukossa 4 on esimerkkejä escape-sekvenssien käytöstä (esimerkeissä erotinmerkit datana, ei rakenteisen datan erotinmerkkeinä):

Taulukko 4. Esimerkkejä escape-sekvenssien käytöstä.

	Kuvitteellinen rakenteinen tieto
	Erotinmerkit koodattuna escape-sekvensseillä

	12|12|12
	12\F\12\F\12

	12^12^12
	12\S\12\S\12

	12&12&12
	12\T\12\T\12

	12~12~12
	12\R\12\R\12

	Lisäksi, jos asetetaan kontekstiin jollekin tiedolle arvo ”\F\” (ei ”|” merkki):

	\F\
	\E\F\E\

[bookmark: _Toc122836174]Subjektien käyttäminen

Seuraavassa käydään läpi subjektien käyttämistä:
· Subjektin tietojen riippuvuus: Yhden subjektin tiedot ovat riippuvaisia subjektin Id-tunnisteesta. Riippuvuussuhteen seurauksena asiakassovelluksen vaihdettua subjektia kontekstiin on kontekstipalvelimen poistettava edelliseen subjektiin liittyvät tiedot. Esimerkiksi potilaan henkilötunnuksen (potilaan id-tieto) vaihtuessa kontekstissa pitää kontekstista poistaa kaikki edelliseen potilaaseen liittyneet tiedot.
· Subjektien riippuvaisuus toisistaan: Koordinaattorille voidaan määritellä myös subjektien välisiä riippuvuuksia. Tällöin vaihdettaessa subjektia, myös edellisestä subjektista riippuvaiset subjektit tietoineen on poistettava. Esimerkiksi hoitojakso-subjekti voi olla riippuvainen potilas-subjektista. Näin poistettaessa potilas-subjektia kontekstista, on poistettava myös potilaaseen liittyvä hoitojakso-subjekti tietoineen.
· Vähintään yksi id-tieto kontekstissa: Kontekstin tietosisällölle ei ole muita rajoittavia tekijöitä kuin yhden id-tiedon pakollisuus. Ilman subjektin id-tietoa kontekstiin ei saa asetta muita subjektin tietoja. Kontekstin tietosisältönä on oltava siis aina vähintään yksi subjektin id-tieto.
· Sama tieto useaan kertaan: CCOW-standardissa joillakin subjekteilla voi olla yhtä subjektin nimeä kohden useita eri arvoja. Esim. kotipuhelinnumerolla voisi olla yhdellä nimellä useita arvoja. Tällaisessa tilanteessa subjektin nimi pitää numeroida juoksevasti (esim. ..PhoneNumberHome.1, ..PhoneNumberHome.2, jne.)
· Aakkoskoosta riippuvuus: Subjektin tietojen nimet ja arvot on käsiteltävä aakkoskoosta riippumattomina, ellei toisin ole erikseen mainittu.
· HL7 v2 Specification: HL7 v2 spesifikaatiota käytetään perustana, jos mahdollista, subjektin tietojen nimeämisessä, semantiikassa ja tietojen arvojen tyypeissä.
· Lokalisointi: Subjektin tietojen nimet tulee esittää englanniksi riippumatta maasta, jossa niitä käytetään. Sen sijaan tietojen arvot voivat olla kyseisen maan omalla kielellä.

[bookmark: _Toc122836175]Minimitoteutuksen subjektit

Tässä minimikontekstinhallinnan määrityksessä on määritelty käyttäjä (User)- ja potilas-subjektit (Patient). Subjektit User ja Patient ovat otettu CCOW-standardista ja nimetty standardin mukaisesti (Seliger 2002b).

Määriteltäessä käyttäjä- ja potilassubjekteille mahdollisia lisätietoja sekä kokonaan uusia subjekteja, pitää ensin tarkistaa, löytyykö CCOW-standardista sopivia subjekteja/subjektin tietoja valmiiksi määriteltyinä ja käyttää niitä. Ellei CCOW-standardista löydy tarvittavia subjekteja, täytyy ne määritellä custom-subjekteiksi (ks. kpl 4.5.3.). Custom-subjektien määrittelysäännöt ovat CCOW-standardin mukaisia (Seliger 2002b). Custom-subjekteja voidaan määritellä myös kansallisesti sovituiksi. Näistä subjekteista sovitaan HL7 Finlandin teknisessä komiteassa yritysten tarpeiden mukaan. Kaikki kansallisesti käytettävät subjektit asetetaan saataville kansalliselta koodistopalvelimelta. Nämä subjektit ja näiden tiedot voivat olla näin suoraan CCOW-standardista saatuja, kansallisesti määriteltyjä omia custom-subjekteja). Subjektikoodiston OID tunnus on: 1.2.246.777.5.40024.2004

Uusiin minimikontekstinhallinnan määrittelyyn lisättäviin kontekstitietoihin on käytettävä HL7 tietotyyppejä. Suoraan CCOW-standardista otettavien kontekstitietojen on noudatettava CCOW-standardissa määriteltyjä tietotyyppejä. Omille custom-subjekteille on sovittava tapauskohtaisesti käytettävät tietotyypit.

[bookmark: _Toc122836176]Käyttäjä-subjekti

User- eli käyttäjä-subjektille on määritelty id-tieto käyttäjätunnus, User.Id.Logon, joka yksilöi käyttäjän.

Käyttäjäsubjektin käyttäjätunnus
· nimi:		User.Id.Logon
· arvo:		käyttäjätunnus.

Minimikontekstinhallinnan määrittelyssä käytettävissä Id-tiedoissa tietotyyppinä pitää olla ST tietotyyppi. ST tietotyypin käyttö edellyttää, että Id-tiedoissa esiintyvät erotinmerkit on koodattava escape-sekvensseillä.

Jos käyttäjäsubjektille on tarve lisätä tietoja, niitä voidaan etsiä ensin CCOW-standardista, jossa on määritelty käyttäjä-subjektille myös muita item-tietoja (Seliger 2002b). Ellei CCOW-standardissa ole määritelty tarvittavia käyttäjä-subjektiin liittyviä tietoja, voidaan ne määritellä custom-subjekteiksi (custom-subject, ks. kappale 4.5.3). Custom-subjekteille on valittava sopiva HL7 tietotyyppi taulukon 1 tietotyypeistä. Custom-subjektit voivat olla joko organisaatiokohtaisia tai sitten kansallisesti sovittuja.

Erotinmerkkien osalta on huomioitava yhteensopivuus minimikontekstihallinnan määrittelyn eri versioiden kohdalla. Minimikontekstinhallinnan versioissa 1, 2 ja 2.1 on Id-tietojen tietotyypiksi kuvattu ainoastaan string, jota ei ole tarkemmin kuvattu. Common Services SIG:issä tästä ei katsottu aiheutuvan ongelmaa, sillä on epätodennäköistä, että käyttäjätunnus (User.Id.Logon) pitäisi sisällään taulukossa 3 kuvattuja erotinmerkkejä. Suosituksena voi pitää, että User.Id.Logon ei saa sisältää erotinmerkkejä.

Liittyvien ohjelmien on huolehdittava itse kontekstinhallintaan asettamiensa käyttäjätunnusten yksilöllisyydestä ja muiden järjestelmien kontekstinhallintaan asettamien käyttäjätunnusten tunnistamisesta. Minimitason kontekstinhallintaratkaisussa koordinaattori ei huolehdi käyttäjän eri käyttäjätunnusten vastaavuustaulukoinnista (käyttäjän eri järjestelmissä olevien mahdollisesti erilaisten käyttäjätunnusten välillä). Kontekstinhallintaan liittyvien järjestelmien on vastattava tästä toiminnallisuudesta itse, mikäli ohjelmat eivät käytä yhteistä geneeristä id:tä käyttäjätunnuksena. Tällainen yleinen id-tunnus on sovittava toimijoiden kesken tapauskohtaisesti. Etuna tällaisessa lähestymistavassa on käyttäjätunnusten mappauksen tarpeettomuus kontekstinhallinnassa. Tosin mahdollinen mappaus esim. geneeristen id-tunnuksien ja järjestelmien omien käyttäjätunnuksien välillä jää järjestelmien omalle vastuulle.

Käyttäjä-subjektin avulla voidaan toteuttaa kertakirjautuminen (single sign-on). Ensimmäinen sovellus, jonka käyttäjä työasemallaan käynnistää, kysyy käyttäjältä tämän käyttäjätunnuksen, jonka perusteella sovellus sitten asettaa käyttäjätunnuksen yhteiseen kontekstiin. Tämän jälkeen avattavat ja kontekstinhallintaan liittyneet sovellukset voivat käynnistyessään käyttää hyväkseen kontekstissa olevaa käyttäjätietoa ja suorittaa kirjautumisen käyttäjän puolesta.

[bookmark: _Toc122836177]Potilas-subjekti

Patient- eli potilassubjektille on määritelty id-tieto potilastunnus, Patient.Id.NationalIdNumber, joka yksilöi potilaan. Yksilöivän id-tiedon arvona tällä subjektilla on Suomessa potilaan henkilöturvatunnus.

Potilassubjektin potilastunnus:
· nimi: 		Patient.Id.NationalIdNumber
· arvo:		henkilöturvatunnus.

Minimikontekstinhallinnan määrittelyssä käytettävissä Id-tiedoissa tietotyyppinä pitää olla ST tietotyyppi. ST tietotyypin käyttö edellyttää, että Id-tiedoissa esiintyvät erotinmerkit on koodattava escape-sekvensseillä.

CCOW-standardissa on määritelty potilas-subjektille useita item-tietoja sekä näiden tietotyypit (Seliger 2002b). Jos potilas-subjektille on tarve lisätä tietoja, niitä voidaan etsiä ensin CCOW-standardista. Ellei CCOW-standardissa ole määritelty tarvittavia potilas-subjektiin liittyviä tietoja, ne voidaan määritellä custom-subjekteiksi (custom-subject, ks. kappale 4.4.3). Custom-subjekteille on valittava sopiva HL7 tietotyyppi taulukon 1 tietotyypeistä. Custom-subjektit voivat olla joko organisaatiokohtaisia tai sitten kansallisesti sovittuja.

Erotinmerkkien osalta on huomioitava yhteensopivuus minimikontekstinhallinnan määrittelyn eri versioiden kohdalla. Minimikontekstinhallinnan versioissa 1, 2 ja 2.1 on Id-tietojen tietotyypiksi kuvattu ainoastaan string, jota ei ole tarkemmin kuvattu. Common Services SIG:issä tästä ei katsottu aiheutuvan ongelmaa, sillä on epätodennäköistä, että potilaan hetu (Patient.Id.NationalIdNumber) pitäisi sisällään taulukossa 3 kuvattuja erotinmerkkejä. Suosituksena voi pitää, että Patient.Id.NationalIdNumber ei saa sisältää erotinmerkkejä.

Potilassubjektin avulla kontekstinhallintaan liittyneet sovellukset voivat synkronoida käyttäjälle näyttämänsä potilaan ilman, että käyttäjän tarvitsee erikseen syöttää potilaan henkilötunnusta.
[bookmark: _Toc122836178]Custom Subjects

Yksittäisellä organisaatiolla voi olla tarve luoda uusia subjekteja omiin käyttötarpeisiinsa, ellei niitä löydy jo valmiiksi määriteltyinä. Tällöin voidaan määritellä itse omia custom-subjekteja. Custom-subjektit on määriteltävä kuten CCOW-standardissa (Seliger 2002b). Näin itse määritellyt subjektit eivät ole ristiriidassa CCOW-standardissa valmiiksi määriteltyjen subjektien kanssa, eikä ole riskiä että jossain määriteltäisiin tismalleen samannimiset subjektit eri entiteeteille.

Custom-subjektien erottaminen muista subjekteista tapahtuu käyttämällä erikseen määriteltyä avainsanaa. Avainsanana käytetään custom subjektia käyttävän organisaation World Wide Web Consortium (W3C) domain-nimeä. Tällaisella tekniikalla eri organisaatioiden määrittelemät custom-subjektit voidaan tunnistaa ja erottaa toisistaan.

Custom-subjektien tietotyypiksi on valittava jokin taulukossa 1 luetelluista HL7 tietotyypeistä.

Jos jollekin custom-subjektille ja sen tiedoille tulee tarvetta yleisempäänkin käyttöön, voidaan ne määritellä kansallisesti sovituiksi. Kansallisesti sovitut subjektit on muodostettava custom-subjektien määrittelysäännöillä. Kansallisesti sovittujen subjektien avainsanana käytetään HL7 Finlandin domain-nimeä hl7.fi.

Taulukossa 5 on kuvitteellisia esimerkkejä custom-subjekteista.

Taulukko 5. Esimerkkejä custom subjektien määrittelystä.

	Custom subjekti
	Selitys

	[hl7.fi]DateRange
	Oma uusi subjekti (DateRange), jota ei löydy standardista

	[hl7.fi]DateRange.Id.[hl7.fi]StartDate
	Oma uusi subjekti (DateRange) ja sille oma uusi item (tieto alkamispäivä, StartDate), Id-osa CCOW-standardin mukainen

	Patient.An.[hl7.fi]Current_medications
	Standardisubjektiin (Patient) lisätty oma uusi item (Current_medications), Patient- ja An-osa CCOW-standardin mukaiset.

[bookmark: _Toc122836179]Subjektit ja turvallisuus

Subjektien käyttöön liittyviä tietoturvakohtia on kuvattu luvussa 7.1.6 ja erityisesti käyttäjäsubjektiin liittyvistä kohdista kappaleessa 7.1.7.

[bookmark: _Toc122836180]Sessionhallinta ja identifioiminen
[bookmark: _Toc122836181]Sessionhallinta

Aikaväliä, jossa yksi tai useampi sovellus on yhteydessä koordinaattoriin, kutsutaan sessioksi. Sessio alkaa, kun ensimmäinen sovellus liittyy kontekstinhallintaan ja päättyy kun viimeinen ohjelma katkaisee yhteyden kontekstinhallintaan.

Sessionhallinnalla puolestaan tarkoitetaan koordinaattorin kykyä huolehtia mm. seuraavista asioista:
· elinkaaren hallinta (session luominen ja tuhoaminen)
· session identifioiminen
· session tilan ylläpito (esim. aktivointi, passivointi ja kontekstin säilyttäminen)
· koordinaattorin oman elinkaaren hallinta (instantiointi, tuhoaminen)

[bookmark: _Toc122836182]Sovellusten identifiointi

Minimitoteutuksessa kontekstisessioon liittyvien sovellusten identifiointi toteutetaan käyttämällä seuraavia parametreja:
· applicationName: sovelluksen yksilöllinen nimi. Liittyessään kontekstinhallintaan sovellus tunnistautuu koordinaattorille nimensä avulla. Käyttäjätunnusta asettavan sovelluksen nimen pitää olla konfiguroituna etukäteen koordinaattorille.

Sovelluksen nimellä voidaan myös konfiguroida etukäteen koordinaattorille, mitkä sovellukset voivat osallistua yhteiseen kontekstiin tai tarkemmalle tasolle vietynä, mitkä sovellukset saavat asettaa ja hakea mitäkin tietoja. Se konfiguroidaanko sovellusten oikeuksia etukäteen koordinaattorille, on ratkaistava toteutuskohtaisesti.

Jos samasta sovelluksesta on tarpeen luoda useita ilmentymiä, jotka liittyvät samaan kontekstinhallintasessioon, pitää ne erotella toisistaan. Sovelluksen on huomioitava tämä vaatimus sovelluslogiikassaan. Yksi tapa yksilöidä sovellukset voisi olla esimerkiksi sovelluksen nimen perään lisättävä sovellusta yksilöivä string #-merkillä erotettuna (esim. Sovellus#1, Sovellus#2, jne..)
· participantCoupon: tunnus, jonka koordinaattori antaa sovellukselle sen liittyessä kontekstinhallintaan. Parametri yksilöi kontekstiin osallistuvan sovelluksen ja sovelluksen on käytettävä sitä jatkossa ollessaan yhteydessä koordinaattoriin.

Parametreja applicationName ja participantCoupon käytetään seuraavasti:
· Kun sovellus liittyy kontekstinhallintaan, tunnistetaan se applicationName-parametrin avulla.
· Liittymisen yhteydessä sovellukselle on annettava uusi participantCoupon-tunniste
· participantCoupon-tunnusta käytetään sovelluksen tunnistamiseen myös muissakin metodeissa (get/set)
· Kun sovellus eroaa kontekstinhallinnasta, on sen käytettävä saamaansa participantCoupon-tunnusta, jotta koordinaattori voisi ylläpitää listaa kontekstinhallintaan osallistuvista sovelluksista ja lopettaa session, kun viimeinenkin sovellus on katkaissut yhteyden.
[bookmark: _Toc122836183]Työaseman identifiointi

Työasema voidaan identifioida seuraavilla parametreilla koordinaattorin sijaitessa palvelimella (ei työasemalla):
· työaseman ip-osoite
· sessioavain.

Työaseman ip-osoitetta ja sessioavainta tarvitaan työaseman yksilöimiseen, kun koordinaattori on palvelimella.

Työaseman ip-osoite saadaan joko palvelukutsusta koordinaattorille tai sitten sovellus välittää sen kontekstiin liittymiskutsun parametrina. ip-osoitteen avulla sovellus voi liittyä ip-osoitteella yksilöitävään kontekstiin.

Sessioavainta tarvitaan, jos työaseman ip-osoitetta ei voida käyttää työasemaa yksilöivänä tunnisteena, esim. NAT-osoitteiden yhteydessä. Sessioavaimen avulla voidaan toteuttaa tarvittaessa myös useita sessioita samalta työasemalta. Sessioavainta käytettäessä on varmistuttava sessioavaimen yksilöllisyydestä.

Sessioavaimen ja työaseman ip-osoitteen avulla kontekstinhallinta voi siis sekä yksilöidä että luoda ja ylläpitää työasemakohtaista kontekstia (joita sessioavaimen tapauksessa voi olla useita samalla työasemalla). Näiden parametrien käytöstä on tarkempaa kuvausta rajapintakuvausten yhteydessä kappaleessa 6.2.2.

Minimikontekstinhallinnan määrittelyssä ei oteta kantaa, kuinka sessioavain saadaan välitettyä eri sovelluksille, jotka haluavat liittyä tiettyyn tietyllä sessioavaimella yksilöityyn kontekstisessioon. Tämä on ratkaistava toteutuskohtaisesti. Sessioavaimen välittäminen sitä tarvitseville muille sovelluksille, voi olla esim. perusjärjestelmän vastuulla.

[bookmark: _Toc122836184]Minimitoteutuksessa tarvittavat rajapinnat

Tässä luvussa käytävät rajapintamääritykset ovat tekniikkariippumattomia. Näiden rajapintojen käyttäminen HTTP-tekniikalla on käyty läpi luvussa 9. Täydelliset CCOW-standardin rajapinnat löytyvät dokumentista “Technology- and Subject-Independent Component Architecture” (Seliger, Royer 2002).

[bookmark: _Toc122836185]Rajapintojen, metodien, parametrien ja subjektien nimeäminen
[bookmark: _Toc122836186]Rajapinnat

Rajapinnat nimetään seuraavasti:
ContextManager, ContextData – kaikki sanat alkavat isolla ja kirjoitetaan yhteen.

[bookmark: _Toc122836187]Metodit

Metodit nimetään seuraavasti:
CreateSession, JoinCommonContext, LeaveCommonContext, SetItemValues, GetItemValues – kaikki sanat alkavat isolla ja kirjoitetaan yhteen.

[bookmark: _Toc122836188]Parametrit

Sekä input että output-parametrit nimetään seuraavasti:
applicationName, participantCoupon, itemNames, itemValues – ensimmäinen sana pienellä seuraavat alkavat isolla ja sanat kirjoitetaan yhteen.

[bookmark: _Toc122836189]Poikkeukset

Poikkeukset nimetään seuraavasti:
GeneralFailure, BadItemNameFormat – kaikki sanat alkavat isoilla kirjaimilla ja kirjoitetaan yhteen.

[bookmark: _Toc122836190]Subjektit

Subjektien nimet ja arvot käsitellään aakkoskoosta riippumattomina.

[bookmark: _Toc122836191]ContextManager-rajapinta (kontekstin luominen, kontekstinhallintaan liittyminen ja siitä eroaminen)
[bookmark: _Toc122836192]CreateSession

Tämä ei ole CCOW-standardin mukainen metodi. CreateSession-metodin avulla sovellus voi pyytää kontekstinhallintapalvelulta sessioavaimen. Kontekstin luominen ja yksilöinti perustuu tällöin tähän sessioavaimeen. Koordinaattori luo näin kontekstin jo tässä vaiheessa, kun sovellus kutsuu metodia, ei vasta kun ensimmäinen sovellus liittyy kontekstinhallintaan.

Metodin käyttö ei ole pakollista. Sessioavaimen voi luoda myös ensimmäinen kontekstiin liittyvä sovellus (esimerkiksi perusjärjestelmä) tai se voidaan luoda jossain muualla kuin koordinaattorissa. Jos sessioavain luodaan muualla kuin koordinaattorissa, on varmistuttava avaimen yksilöllisyydestä (ks. kappale 7.1.9). Jatkossa kuitenkin suositellaan käyttämään aina CreateSession-metodia kontekstin ja sessioavaimen luomiseen. Siirtymävaiheessa, jossa on olemassa rinnakkain aikaisempien kontekstimääritysten ja tämän määrityksen mukaisia toteutuksia, voidaan sessioavain luoda muuallakin kuin kontekstipalvelimessa.

Sessioavainta tarvitaan työasemakohtaisen kontekstisession tunnistamiseen palvelinpohjaisessa kontekstinhallinnassa, jos työaseman ip-osoitetta ei voida käyttää työasemaa yksilöivänä tunnisteena. Sessioavaimen avulla voidaan toteuttaa tarvittaessa myös useita kontekstisessioita samalta työasemalta. Sessioavain välitetään kontekstipalvelimelle JoinCommonContext-metodissa sovelluksen liittyessä kontekstiin.

· inputs(optional string applicationName,
optional string hostAddress,)
· outputs(string sessionKey)
· raises(GeneralFailure,
NotImplemented)

	Input-parametri
	string applicationName

	Merkitys
	Vapaaehtoinen parametri. Metodia kutsuvan sovelluksen nimi. Sovellusten nimien tulee olla yksilöllisiä.

	Toteutus-näkökulma
	Pyytäessään koordinaattoria luomaan sessioavaimen sovellus voi antaa parametrina sovellusnimensä koordinaattorille. Koordinaattorille voidaan näin konfiguroida haluttaessa etukäteen sovellukset, jotka voivat pyytää sessioavaimen luomista. Konfiguroidaanko sallitut sovellukset etukäteen koordinaattorille, on ratkaistava toteutuskohtaisesti.

	Input-parametri
	string hostAddress

	Merkitys
	Vapaaehtoinen parametri. Sen työaseman ip-osoite, johon konteksti halutaan rekisteröidä.

	Toteutus-näkökulma
	Parametria hostAddress käyttämällä koordinaattori voi rekisteröidä sessioavaimen tiettyyn annettuun ip-osoitteseen.

Parametria käyttämällä voidaan sallia sovellusten liittyminen työasemalta sekä ip-osoitteella että sessioavaimella. Huomioitava, ettei tämä lähestymistapa käy, kun samalta työasemalta tarve käynnistää useita sessioita.

	Output-parametri
	string sessionKey

	Merkitys
	Sessioavain, palvelun kontekstille antama yksilöllinen tunniste

	Toteutus-näkökulma
	Parametria käytetään JoinCommonContext-kutsussa, jotta voidaan yksilöidä konteksti, johon sovellus haluaa liittyä.

Sessioavaimen on oltava vaikeasti arvattava ja yksilöitävä tiettyä kontekstia.

Minimikontekstinhallinnan määrittelyssä ei oteta kantaa, kuinka sessioavain saadaan välitettyä eri sovelluksille, jotka haluavat liittyä tiettyyn tietyllä sessioavaimella yksilöityyn kontekstisessioon. Tämä on ratkaistava toteutuskohtaisesti. Sessioavaimen välittäminen sitä tarvitseville muille sovelluksille voi olla esim. perusjärjestelmän vastuulla. Sessioavaimen välittäminen web-sovellukselle on kuvattu luvussa 9.

	Poikkeustilanteet
	Merkitys

	GeneralFailure
	Tätä virhettä on käytettävä seuraavissa tilanteissa:
· Palvelupyynnössä koordinaattorille on virheitä.
· Kontekstinhallintapalveluun on konfiguroitu sallitut sovellukset etukäteen ja kontekstinhallintapalvelu ei tunnista sovellusta.
· Kontekstinhallintapalvelun sisäinen virhe. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu

[bookmark: _Toc122836193]JoinCommonContext

Tätä metodia kutsumalla sovellus ilmaisee koordinaattorille, että se haluaa liittyä kontekstinhallintaan. koordinaattori palauttaa sovellukselle participantCoupon-tunnisteen.

· inputs(string applicationName,
optional string hostAddress,
optional string sessionKey)
· outputs(long participantCoupon)
· raises(AlreadyJoined,
TooManyParticipants,
GeneralFailure,
NotImplemented)

	Input-parametri
	string applicationName

	Merkitys
	Kutsuvan sovelluksen nimi. Nimen avulla kontekstinhallintapalvelu tunnistaa palveluun liittyvän sovelluksen. Sovellusten nimien tulee olla yksilöllisiä.

	Toteutus-näkökulma
	Liittyessään kontekstinhallintaan sovellus tunnistautuu koordinaattorille nimensä avulla. Sovelluksen nimellä voidaan myös konfiguroida etukäteen koordinaattorille, mitkä sovellukset voivat osallistua yhteiseen kontekstiin.

Nimen perusteella voidaan myös rajata, mitkä sovellukset saavat luoda kontekstin (= mikä sovellus liittyy ensimmäisen kontekstiin, ellei sitä ole jo luotu CreateSession-metodia kutsuttaessa). Konfiguroidaanko sallitut sovellukset etukäteen koordinaattorille, on ratkaistava toteutuskohtaisesti.

Jos samasta sovelluksesta on tarpeen luoda useita ilmentymiä, jotka liittyvät samaan kontekstinhallintasessioon, pitää ne erotella toisistaan. Sovelluksen on huomioitava tämä vaatimus sovelluslogiikassaan. Yksi tapa yksilöidä sovellukset voisi olla esimerkiksi sovelluksen nimen perään lisättävä sovellusta yksilöivä string #-merkillä erotettuna (esim. Sovellus#1, Sovellus#2, jne..)

	Input-parametri
	optional string hostAddress

	Merkitys
	Vapaaehtoinen parametri. Sen työaseman ip-osoite, johon konteksti halutaan rekisteröidä..

	Toteutus-näkökulma
	Jatkossa tämän parametrin sijasta on suositeltavaa käyttää sessionKey-parametria. Siirtymävaiheessa, jossa on olemassa rinnakkain aikaisempien kontekstimääritysten ja tämän määrityksen mukaisia toteutuksia, voidaan kontekstiin liittymisessä käyttää myös ip-osoitetta.

Liittämällä ip-osoitteen JoinCommonContext-metodiin, sovellus voi liittyä työaseman ip-osoitteella yksilöitävään kontekstiin.

Tarvitaan lähinnä palvelinpohjaisessa kontekstinhallinnassa tilanteessa, jossa kontekstipalvelu ei saa työaseman ip-osoitetta suoraan palvelukutsusta.

	Input-parametri
	optional string sessionKey

	Merkitys
	Vapaaehtoinen parametri. Sessioavain, kontekstipalvelun kontekstille antama yksilöllinen tunniste

	Toteutus-näkökulma
	Liittämällä sessioavaimen JoinCommonContext-metodiin, sovellus voi liittyä sessioavaimella yksilöitävään kontekstiin. Sessioavainta tarvitaan lähinnä palvelinpohjaisessa kontekstinhallinnassa.

Sessioavaimen on oltava vaikeasti arvattava ja yksilöitävä tiettyä kontekstia.

Minimikontekstinhallinnan määrittelyssä ei oteta kantaa, kuinka sessioavain saadaan välitettyä eri sovelluksille, jotka haluavat liittyä tiettyyn tietyllä sessioavaimella yksilöityyn kontekstisessioon. Tämä on ratkaistava toteutuskohtaisesti. Sessioavaimen välittäminen sitä tarvitseville muille sovelluksille voi olla esim. perusjärjestelmän vastuulla. Sessioavaimen välittäminen web-sovellukselle on kuvattu luvussa 9.

	Output-parametri
	long participantCoupon

	Merkitys
	Sovellus käyttää tätä kontekstinhallintapalvelun antamaa coupon-arvoa tunnistautumiseen aina, kun se kutsuu kontekstipalvelun metodeja.

	Toteutus-näkökulma
	Tarvitaan koordinaattorin oman elinkaaren hallintaan JoinCommonContext ja LeaveCommonContext kutsujen yhteydessä.

participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Poikkeustilanteet
	Merkitys

	AlreadyJoined
	Samalla nimellä (applicationName) varustettu sovellus on jo mukana kontekstinhallintapalvelussa.

	TooManyParticipants
	Jos kontekstinhallintapalveluun on määritelty maksimi määrä osallistuvien sovelluksien määrälle ja tämä määrä ylittyy.

	GeneralFailure
	Tätä virhettä on käytettävä seuraavissa tilanteissa:
· Palvelupyynnössä koordinaattorille on virheitä.
· Kontekstinhallintapalveluun on konfiguroitu sallitut sovellukset etukäteen ja kontekstinhallintapalvelu ei tunnista sovellusta.
· Kontekstinhallintapalvelun sisäinen virhe. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu

JoinCommonContext-kutsuun voidaan liittää seuraavat valinnaiset parametrit:
· hostAddres = työaseman ip-osoite.
· sessionKey = sessioavain, kontekstipalvelun kontekstille antama yksilöllinen tunniste

JoinCommonContext-metodilla voi näin liittyä kontekstiin seuraavilla parametreilla (applicationName aina pakollinen):
· hostAddress: kontekstisession yksilöinti perustuu työaseman ip-osoitteeseen. Tätä parametria tarvitaan tilanteessa, jossa työaseman ip-osoitetta ei saada suoraan palvelukutsusta. Esimerkiksi web-palvelimella olevan sovelluksen on välitettävä työaseman osoite koordinaattorille tässä parametrissa.
· sessionKey: kontekstisession yksilöinti perustuu sessioavaimeen. Sovelluksien on liityttävä kontekstiin antamalla JoinCommonContext-metodissa parametriksi sessioavain. Sessioavain saadaan koordinaattorilta CreateSession-metodilla.. Sessioavaimen käyttö mahdollistaa myös useiden sessioiden luonnin samalle työasemalla.
· molemmat parametrit: sovellusten liittyminen kontekstiin voidaan sallia molempien parametrien avulla, sekä ip-osoitteella että sessioavaimella On huomioitava, että tämä lähestymistapa ei käy, jos samalta työasemalta on tarve käynnistää useita sessioita. Tällöin on riski, että koordinaattori menee sekaisin, mihin sessioavaimella yksilöitävään kontekstisessioon sovellus pitäisi liittää. Hyödynnettäessä mahdollisuutta luoda useita sessioita samalta työasemalta, on aina käytettävä sessioavainta.
· ilman parametreja, jolloin kontekstisessio yksilöidään sovelluksen palvelukutsusta saatavan työaseman ip-osoitteen perusteella.
· suositeltavin tapa kontekstiin liittymisessä on käyttää sessioavainta ja luoda sessioavain CreateSession-metodilla.

[bookmark: _Toc122836194]LeaveCommonContext

Tätä metodia kutsumalla sovellus ilmaisee koordinaattorille, että se haluaa erota kontekstinhallinnasta. Input-parametrina käytetään participantCoupon-tunnistetta, jonka sovellus sai liittyessään kontekstinhallintaan (JoinCommonContext).

· inputs(long participantCoupon)
· outputs()
· raises (UnknownParticipant,
GeneralFailure,
NotImplemented)

	Input-parametri
	long participantCoupon

	Merkitys
	Parametrilla kontekstinhallintapalvelu tunnistaa sovelluksen ja osaa katkaista yhteyden oikealta sovellukselta

	Toteutus-näkökulma
	Tarvitaan koordinaattorin oman elinkaaren hallinnassa; kun kaikki osallistuvat sovellukset ovat katkaisseet yhteyden, sessio loppuu ja komponentti voidaan tuhota..

participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Poikkeustilanteet
	Merkitys

	UnknownParticipant
	Sovelluksen participantCoupon-parametri ei ole oikea.

	GeneralFailure
	Tätä virhettä on käytettävä seuraavissa tilanteissa:
· Palvelupyynnössä koordinaattorille on virheitä.
· Kontekstinhallintapalvelun sisäinen virhe. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu.

[bookmark: _Toc122836195]CD (ContextData-rajapinta, kontekstitiedon käsittely)
[bookmark: _Toc122836196]SetItemValues

Tätä metodia kutsumalla sovellus asettaa kontekstinhallinta-komponentin ylläpitämään kontekstiin kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, asetettavien tietojen nimet sekä asetettavien tietojen arvot.

· inputs(long participantCoupon,
string[] itemNames,
string[] itemValues)
· outputs()
· raises (UnknownParticipant,
NameValueCountMismatch,
BadItemNameFormat,
BadItemType,
BadItemValue,
GeneralFailure,
NotImplemented)

	Input-parametri
	long participantCoupon

	Merkitys
	Sovellus käyttää tätä kontekstinhallintapalvelun antamaa coupon-arvoa tunnistautumiseen aina, kun se kutsuu palvelun metodeja.

	Toteutus-näkökulma
	participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Input-parametri
	string[] itemNames

	Merkitys
	Sovellus asettaa tällä parametrilla kontekstinhallintaan asettavan/asetettavien subjektin tietojen nimet.

	Toteutus-näkökulma
	Taulukon alkiot vastaavat itemValues parametrin arvoja. Esim. alkiossa 1 oleva tietonimi vastaa itemValues taulukon alkiota 1.

Sovelluksen asetettava aina muiden tietojen mukana myös subjektin Id-tieto. Näin voidaan varmistua, etteivät tiedot yhdisty vahingossa väärään subjektiin.

Kontekstipalvelun on poistettava kontekstista kaikki edellisestä subjektista riippuvaiset tiedot ja subjektit, kun sovellus asettaa uuden subjektin tietoja (tilanteessa, jossa subjektille asetetaan uusi id-tieto).

Jos Id-tieto ei muutu (eli subjekti pysyy samana), ei kyseisen subjektin entisiä tietoja saa poistaa, tietoja voi ainoastaan lisätä ja muuttaa.

HUOM! Kontekstipalvelun sallittava myös User.Id.Logon (käyttäjätunnuksen) asettaminen muiden käyttäjän tietojen asettamisen. yhteydessä, jos asetettava User.Id.Logon arvo on jo kontekstissa (eli luotettu sovellus on jo aiemmin asettanut käyttäjätunnuksen kontekstiin). Ei-luotettu sovellus ei saa kuitenkaan edelleenkään vaihtaa käyttäjätunnusta kontekstiin.

Myös muiden kontekstitietojen kuin vain käyttäjäkontekstin osalta voidaan määritellä, mitä tietoja mikäkin sovellus saa kontekstiin asettaa. Nämä asetukset ovat konfiguroitava kontekstipalveluun. Konfiguroidaanko tällaisia asetuksia etukäteen koordinaattorille, on ratkaistava toteutuskohtaisesti.

	Input-parametri
	string[] itemValues

	Merkitys
	Sovellus asettaa tällä parametrilla kontekstinhallintaan asettavan/asetettavien tietojen arvot.

	Toteutus-näkökulma
	Myös tyhjien arvojen asettaminen sallitaan.

Sovelluksen on asetettava aina subjektin Id-tiedon arvo, jos se asettaa myös muita subjektin item-tietojen arvoja.

	Poikkeustilanteet
	Merkitys

	UnknownParticipant
	Sovelluksen participantCoupon-parametri ei ole oikea.

	NameValueCountMismatch
	itemNames ja itemValues muuttujissa on eri määrät muuttujia.

	[bookmark: OLE_LINK3]BadItemNameFormat
	sovellus yrittää asettaa tietoa (itemiä), jonka nimeämismuoto on väärä.

Edellytyksenä, että kontekstinhallinta tarkistaa tiedon muodon. Se käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	BadItemType
	jollekin kontekstin tiedoista yritetään syöttää väärää tietotyyppiä (esim. lukukenttään string-muuttuja).

Edellytyksenä on, että koordinaattori tarkistaa tiedon muodon. Käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	BadItemValue
	yritetään asettaa tietoa jonka arvo on erikseen määritelty kelvottomaksi.

Edellytyksenä on, että koordinaattori tarkistaa asetettavan tiedon arvon. Käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	GeneralFailure
	Tätä virhettä on käytettävä seuraavissa tilanteissa:
· Palvelupyynnössä koordinaattorille on virheitä.
· Kontekstinhallintapalveluun on konfiguroitu sovellukselle sallitut asetettavat kontekstitiedot ja sovellus yrittää asettaa kontekstitietoa, joka ei ole sille sallittu.
· Kontekstinhallintapalvelun sisäinen virhe. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu.

[bookmark: _Toc122836197]GetItemValues

Tätä metodia kutsumalla sovellus hakee kontekstinhallinta-komponentin ylläpitämästä kontekstista kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, sekä haettavien tietojen nimet. Paluuarvona sovellus saa haettavien tietojen arvot, jos niitä on löytynyt kontekstista.

· inputs(long participantCoupon,
string[] itemNames)
· outputs(string[] itemValues)
· raises(BadItemNameFormat,
UnknownItemName,
GeneralFailure,
NotImplemented,
UnknownParticipant)

	Input-parametri
	long participantCoupon

	Merkitys
	Sovellus käyttää tätä kontekstinhallintapalvelun antamaa coupon-arvoa tunnistautumiseen aina, kun se kutsuu palvelun metodeja.

	Toteutus-näkökulma
	Tätä parametria ei ole CCOW-standardin vastaavassa rajapinnassa. Minimitoteutuksessa parametri on mukana, koska siinä ei käytetä standardin secure-rajapintoja, joiden avulla sovellus voidaan tarvittaessa tunnistaa.

participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Input-parametri
	string[] itemNames

	Merkitys
	itemNames taulukko sisältää ne kontekstin item-nimet, joihin liittyvät arvot kontekstinhallinnan halutaan palauttavan

	Toteutus-näkökulma
	Sovelluksen on haettava aina muiden tietojen mukana myös subjektin Id-tieto. Näin sovellus voi varmistua, että kontekstissa on haettavan subjektin tiedot.

Kontekstipalveluun voidaan määritellä, mitä tietoja mikäkin sovellus saa kontekstista hakea. Nämä asetukset ovat konfiguroitava kontekstipalveluun. Konfiguroidaanko tällaisia asetuksia etukäteen koordinaattorille, on ratkaistava toteutuskohtaisesti.

	Output-parametri
	string[] itemValues

	Merkitys
	tässä parametrissa kontekstinhallinnasta palautuu sovellukselle tiedot, jotka vastaavat input-parametria string[] itemNames.

	Toteutus-näkökulma
	[bookmark: OLE_LINK4]Jos haetaan item-tietoa, jonka nimi-arvo-paria ei ole asetettu kontekstiin, ei palauteta mitään (ei nimeä eikä arvoa) Muut haettavat tiedot palautetaan.

Jos haetaan item-tietoa, jonka arvo on asetettu tyhjäksi, palautetaan tiedon nimi ja arvo tyhjänä, sekä mahdolliset muut item-tiedot normaalisti.

Tietojen ei tarvitse olla tietyssä järjestyksessä parametrissa, eikä kontekstinhallintapalvelu saa olettaa tiettyä järjestystä.

	Poikkeustilanteet
	Merkitys

	BadItemNameFormat
	Sovellus yrittää hakea tietoa (itemiä), jonka nimeämismuoto on väärä.

Edellytyksenä, että kontekstinhallinta tarkistaa tiedon muodon. Se käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	UnknownItemName
	Tällä virheellä voidaan ilmaista, tukeeko kontekstipalvelin tiettyä ItemName:a.

Poikkeus ilmenee, jos ItemName:n tarkistaminen on toteutettu kontekstipalvelimeen (valinnainen ominaisuus).

	GeneralFailure
	Tätä virhettä on käytettävä seuraavissa tilanteissa:
· Palvelupyynnössä koordinaattorille on virheitä.
· Kontekstinhallintapalveluun on konfiguroitu sovellukselle sallitut haettavat kontekstitiedot ja sovellus yrittää hakea kontekstitietoa, joka ei ole sille sallittu.
· Kontekstinhallintapalvelun sisäinen virhe. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu.

	UnknownParticipant
	Sovelluksen participantCoupon-parametri ei ole oikea.

[bookmark: _Toc122836198]Rajapintojen käyttöesimerkkejä
[bookmark: _Toc122836199]Kontekstin luominen, kontekstinhallintaan liittyminen ja kontekstin asettaminen

Kontekstin luominen tapahtuu joko silloin, kun ensimmäinen sovellus liittyy kontekstinhallintaan JoinCommonContext-metodilla tai ennen tätä sessioavaimen luonnin yhteydessä CreateSession-metodilla.

Sovelluksen on liityttävä (JoinCommonContext) kontekstinhallintaan ennen kuin se voi kutsu muita kontekstinhallinnan metodeja. Missä vaiheessa sovellus omassa logiikassaan sitten liittyy kontekstinhallintaan, on ratkaistava toteutuskohtaisesti.

Kuvassa 2 käydään läpi, kuinka kontekstinhallinnan rajapintoja käytetään kontekstiin liittymiseen ja käyttäjäkontekstin asettamiseen. Oletuksena tässä kuviossa on, että sovellus pyytää ensin CreateSession-metodilla koordinaattorilta sessioavaimen, jota sovellus käyttää JoinCommonContext-metodissa liittyessään kontekstiin. Sitten sovellus asettaa kontekstiin käyttäjätunnuksen SetItemValues-metodilla.

Kuva 2. Kontekstin luominen, kontekstiin liittyminen ja kontekstin asettaminen.

1. Sovellus pyytää koordinaattoria luomaan sessioavaimen CreateSession-metodilla.

Input-parametrina sovellus ei anna tässä tapauksessa mitään.

Koordinaattori palauttaa sovellukselle luomansa sessioavaimen (sessionKey).

2. Sovellus liittyy kontekstinhallintaan kutsumalla metodia JoinCommonContext.

Input-parametrina on sovelluksen nimi (applicationName) ja sessioavain (sessionKey).

Metodin paluuarvona sovellus saa kontekstinhallinnalta participantCoupon-tunnisteen. Sovellus käyttää tätä tunnistetta parametrina jatkossa kaikissa metodikutsuissa.

3. Sovellus asettaa kontekstinhallintaan käyttäjäkontekstin kutsumalla metodia SetItemValues.

Input-parametrina sovellus antaa vaiheessa 2 saamansa participantCoupon-tunnisteen sekä asetettavan kontekstitiedon nimen ja arvon, eli tässä tapauksessa käyttäjätunnuksen nimen User.Id.Logon sekä sen arvon mituomai.

Nyt yhtenä kontekstitietona on käyttäjätunnus mituomai.

[bookmark: _Toc122836200]Kontekstinhallintaan liittyminen ja kontekstin hakeminen

Kuvassa 3 käydään läpi kuinka kontekstinhallinnan rajapintoja käytetään käyttäjäkontekstin hakemiseen. Oletuksena tässä kuviossa on, että sovellus liittyy samaan kontekstiin kuin edellisessä kappaleessa 6.4.1 kuvattiin ja sillä on tiedossa kyseisen kontekstin sessioavain. Sitä, miten sovellus on saanut tietoonsa saman sessioavaimen, ei kuvata.

Kuva 3. Kontekstiin liittyminen ja käyttäjäkontekstin hakeminen.

1. Sovellus liittyy kontekstinhallintaan kutsumalla metodia JoinCommonContext.

Input-parametrina on sovelluksen nimi (applicationName) ja sessioavain (sessionKey).

Metodin paluuarvona sovellus saa kontekstinhallinnalta participantCoupon-tunnisteen, tämä on sovelluskohtainen tunnus ja yksilöi nimenomaan tätä sovellusta (eli ei ole sama kuin edellisen kappaleen 6.4.1 sovelluksen saama). Sovellus käyttää tätä tunnistetta parametrina jatkossa kaikissa metodikutsuissa.

2. Sovellus hakee kontekstinhallinnasta GetItemValues-metodilla sinne asetetun käyttäjätunnuksen voidakseen suorittaa kertakirjautumisen.

Input-parametrina sovellus antaa vaiheessa 1 saamansa participantCoupon-tunnisteen sekä haettavan kontekstitiedon nimen, eli tässä tapauksessa käyttäjätunnuksen nimen User.Id.Logon (itemNames-parametrin arvona)

Metodin paluuarvona sovellus saa kontekstinhallinnalta käyttäjän käyttäjätunnuksen mituomai (itemValues-parametrin arvona).

[bookmark: _Toc122836201]Kontekstinhallinnasta eroaminen

Sovellus eroaa kontekstista suljettaessa sovellusta tai kun siitä kirjaudutaan ulos. Eroaminen voi tapahtua myös aikaisemmassa vaiheessa riippuen sovelluksen toteutuksesta. Kuvassa 4 sovellus eroaa kontekstinhallinnasta LeaveCommonContext-metodilla. Input-parametrina sovellus antaa participantCoupon-tunnisteen.

. Kuva 4. Kontekstinhallinnasta eroaminen.

[bookmark: _Toc122836202]Kontekstin tietosisällön käsittelyssä huomioitavaa

Kontekstitiedon käsittely tapahtuu yksinkertaisilla get/set-metodeilla. Koordinaattori ei kutsu osallistuvia sovelluksia, sovellusten ei näin tarvitse toteuttaa rajapintoja, ainoastaan kutsua koordinaattorin rajapintojen tarjoamia metodeja.

Minimitoteutuksessa kontekstiin kohdistuvat haut tapahtuvat käyttäjälähtöisesti potilaskontekstin osalta, taustalla ei ole CCOW-standardin tapaista automatiikkaa. Käytännössä tämä tarkoittaa sitä, että käyttäjä päättää, milloin sovellus hakee viimeisimmäksi käsitellyn potilaan tunnuksen kontekstista (esim. painamalla "Hae viimeisin potilas"-painiketta käyttöliittymässä) tai hakeminen on yhdistetty esimerkiksi sovelluksen avautumiseen. Käyttäjätunnuksen osalta toimintoketju on käyttäjästä riippumaton. Käyttäjätunnus haetaan kontekstista, kun halutaan toteuttaa kertakirjautuminen.

[bookmark: _Toc122836203]Potilaskontekstin muutos

Potilaskontekstin muutosten tapahtumaketju on seuraavanlainen (oletuksena, että sovellus on jo liittynyt kontekstinhallintaa):

1. Käyttäjä valitsee potilaan käyttäen jotain integraatioon kytkettyä sovellusta.
2. Sovellus asettaa (SetItemValues) kontekstia identifioivan tunnisteen (potilastunniste) kontekstiin.
3. Käyttäjä vaihtaa toiseen sovellukseen ja klikkaa esim. "Hae viimeisin potilas"-painiketta, jolloin sovellus hakee kontekstista viimeisimmäksi käsitellyn potilaan.
4. Sovellus sopeuttaa sisäisen tilansa ja näyttää tiedot potilaskontekstin mukaisesti (näyttää sen potilaan tiedot, jonka potilastunnuksen sai kontekstinhallinnasta).

[bookmark: _Toc122836204]Käyttäjäkontekstin muutos

Käyttäjäkontekstin asettamisessa kontekstiin on huomioitava seuraavat tietoturvakohdat:
· koordinaattorin on tunnistettava käyttäjäkontekstia asettava sovellus
· myös asettavan sovelluksen on oltava varma, että se on yhteydessä olettamaansa koordinaattoriin.
· koordinaattorille on etukäteen konfiguroitu, mikä sovellus (tai mitkä sovellukset) saa asettaa käyttäjäkontekstin,

Tällainen vaadittava asettavan sovelluksen ja koordinaattorin molemmin puoleinen tunnistaminen on mahdollista luvussa 7 kuvatulla tietoturvaratkaisulla.

Käyttäjäkontekstin hakeminen ei ole käyttäjän itsensä ohjaamaa, vaan hänen näkökulmastaan automaattista. Näin mahdollistetaan kertakirjautuminen eri sovelluksiin. Tämä tarkoittaa seuraavaa:

· Kun sovellusta avataan ja se liittyy kontekstinhallintaan, tarkistaa sovellus onko kontekstinhallinnassa jo käyttäjätunnus (= käyttäjä on jo kerran kirjautunut johonkin kontekstinhallintaan kirjautumisen mahdollistavaan luotettuun sovellukseen). Jos on, hakee sovellus käyttäjätunnuksen kontekstista ja suorittaa automaattisen sisäänkirjauksen.
· Jos sovellusta avattaessa kontekstissa ei ole käyttäjätunnusta (= käyttäjä ei ole vielä kirjautunut kontekstinhallintaan kirjautumisen mahdollistavaan luotettuun sovellukseen) on olemassa seuraavat vaihtoehdot:
· Jos sovelluksella, johon käyttäjä on kirjautumassa, on oikeus asettaa käyttäjä kontekstinhallintaan, pyydetään käyttäjää kirjautumaan, jonka jälkeen sovellus asettaa käyttäjätunnuksen kontekstiin
· Jos sovelluksella ei ole oikeutta asettaa käyttäjää kontekstiin, on käyttäjän kirjauduttava vain tähän sovellukseen ja käytettävä sitä ilman kontekstinhallintaa tai sitten käyttäjän on ensin kirjauduttava luotettuun sovellukseen.

Näin käyttäjäkontekstinmuutosten tapahtumaketju kokonaisuudessaan on seuraavanlainen:

1. Käyttäjä avaa sovelluksen, joka liittyy kontekstinhallintaan.
2. Sovellus tarkistaa, onko käyttäjä jo kirjautunut kontekstinhallintaan luotetun sovelluksen välityksellä.
a. Jos käyttäjä on kirjautunut, sovellus hakee käyttäjätunnuksen kontekstista ja kirjaa käyttäjän sovellukseen
b. Ellei käyttäjä ole kirjautunut, sovellus pyytää käyttäjää kirjautumaan ilman kontekstinhallintaa. Jos kyseessä on luotettu sovellus, käyttäjäkonteksti voidaan asettaa. Näin käyttäjä kirjautuu sovellukseen ja sovellus asettaa kirjauksen jälkeen käyttäjätunnuksen kontekstiin.
3. Vaiheet 1 ja 2 toistetaan aina kun uusi sovellus aukaistaan.
4. Sovelluksia suljettaessa tai käyttäjän kirjautuessa ulos sovelluksesta sovellus eroaa kontekstista.

[bookmark: _Toc122836205]Tietoturva

Tässä luvussa kuvataan kontekstipalvelun ja siihen liittyvien sovellusten välistä tietoturvaa. Tätä tietoturvaratkaisua on suositeltavaa käyttää niin organisaation sisäiseen kontekstinhallintaan kuin tilanteeseen, jossa kontekstinhallintaan on tarve liittyä organisaation ulkopuolelta. Myös mahdollisen alueellisesti keskitetyn kontekstipalvelun ja siihen liittyvien järjestelmien välinen tietoturva voidaan toteuttaa tällä ratkaisulla.

Läpikäytävissä esimerkeissä ja ratkaisuissa oletetaan, että kontekstipalvelu on kontekstipalvelimella pyörivä palvelu. Tilanteetta, jossa kontekstipalvelu olisi työasemalle asennettu palvelu, ei ole käsitelty.

[bookmark: _Toc122836206]Huomioitavat kohdat työpöytäintegraation tietoturvassa

Ennen tietoturvaratkaisun kuvausta käydään läpi kohtia, jotka täytyy huomioida työpöytäintegraation tietoturvassa.

[bookmark: _Toc122836207]Työpöytäintegraation liittyvien järjestelmien ja kontekstipalvelun välisen liikenteen tietoturva

Työpöytäintegraatioon liittyvien järjestelmien ja kontekstipalvelun välinen liikenteen tietoturva koostuu kahdesta kohdasta, kun otetaan huomioon tarve liittää työasemakohtaiseen kontekstiin myös organisaation ulkopuolinen järjestelmä. Kohdat ovat (kuva 5):
· organisaation sisäisten järjestelmien ja kontekstipalvelun välinen tietoturva. Nämä järjestelmät voivat olla web-sovelluksia (1a) tai työasemasovelluksia (1b)
· organisaation ulkopuolisten järjestelmän (esim. aluetietojärjestelmä) ja kontekstipalvelun välinen tietoturva (2)

Kuva 5. Työpöytäintegraation tietoturvassa huomioitava kohdat.

Edellä kuvassa 5 käytetään työpöytäintegraation toteuttamiseen organisaation sisäistä kontekstipalvelua. Tässä dokumentissa kuvattu tietoturvaratkaisu ei kuitenkaan rajaa pois mahdollisuutta, että käytettäisiin keskitettyä alueellista tai vastaavaa kontekstipalvelinta (kuva 6).

Kuva 6. Alueellisen kontekstipalvelimen käyttäminen.
Lähinnä tämä tarkoittaa tilannetta, jossa organisaation sisäistä kontekstipalvelinta ei ole käytössä ja esimerkiksi aluetietojärjestelmä tarjoaa tätä palvelua organisaatiolle. Tällaisessa tilanteessa kontekstipalvelua käytetään organisaation ulkopuolisen järjestelmän ja organisaation sisäisten järjestelmien väliseen työpöytäintegraatioon. Tavoitteena on, että käytetään jompaakumpaa kontekstipalvelua mutta ei molempia päällekkäin.

[bookmark: _Toc122836208]Kontekstin luominen CreateSession-metodilla

Koordinaattorille määriteltävä, mikä (tai mitkä) sovellus saa luoda kontekstin kutsumalla CreateSession-metodia. Näiden oikeuksien konfigurointi on ratkaistava toteutuskohtaisesti.

[bookmark: _Toc122836209]Kontekstin luominen JoinCommonContext-metodin yhteydessä

Koordinaattorille on määriteltävä mikä (tai mitkä) sovellus saa luoda kontekstin. Käytännössä tämä tarkoittaa sovellusta, joka ensimmäisenä liittyy kontekstinhallintaan. Huom. konteksti on voitu luoda jo CreateSession-metodia kutsuttaessa (joka on myös tietoturvan kannalta suositeltavampi tapa)! Näiden oikeuksien konfigurointi on ratkaistava toteutuskohtaisesti.

[bookmark: _Toc122836210]Sessioavaimen välittäminen

Minimikontekstinhallinnan määrittelyssä ei oteta kantaa, kuinka sessioavain saadaan välitettyä eri sovelluksille, jotka haluavat liittyä tiettyyn tietyllä sessioavaimella yksilöityyn kontekstisessioon. Tämä on ratkaistava toteutuskohtaisesti. Sessioavaimen välittäminen sitä tarvitseville muille sovelluksille, voi olla esim. ydinjärjestelmän vastuulla. Sessioavaimen välittäminen on kuitenkin toteutettava turvallisesti. Sessioavaimen välittäminen web-sovellukselle on kuvattu luvussa 9.

[bookmark: _Toc122836211]Kontekstiin liittyminen

Koordinaattorille voidaan määritellä, mitkä sovellukset saavat liittyä kontekstiin. Näiden oikeuksien konfigurointi on ratkaistava toteutuskohtaisesti.

[bookmark: _Toc122836212]Oikeudet hakea ja asettaa kontekstietoja

Koordinaattorille voidaan määritellä, mitä kontekstitietoja mikäkin sovellus saa kontekstiin asettaa. Nämä oikeudet ovat konfiguroitava etukäteen koordinaattorille. Näiden oikeuksien konfigurointi on ratkaistava toteutuskohtaisesti. Myös kontekstitietojen hakemista voidaan rajoittaa. Kontekstipalveluun voidaan määritellä etukäteen, mitä tietoja mikäkin sovellus saa kontekstista hakea. Myös näiden oikeuksien konfigurointi on ratkaistava toteutuskohtaisesti.

Yksi ratkaisu määritellä oikeuksia kontekstitietoihin on konfiguroida koordinaattorille sovellusten nimet ja liittää oikeudet sovelluksien nimiin. Kontekstiin liittyessään, sovellus tunnistautuu sovellusnimensä (applicationName) sekä myöhemmin tässä luvussa kuvatun sovelluksen sertifikaatin avulla. Tämän jälkeen sovellukselle määritellyt oikeudet voidaan liittää luotettavasti sovellukseen.

[bookmark: _Toc122836213]Käyttäjätunnuksen asettaminen kontekstiin & luotettu sovellus

Käyttäjätunnus on asetettava/vaihdettava tietyllä ennalta määritellyllä sovelluksella (tai sovelluksilla). Tällainen sovellus on määriteltävä koordinaattorille luotetuksi sovellukseksi. SetItemValues-metodin avulla ei saa siis asettaa käyttäjää mikä tahansa sovellus.

Jos näin olisi, mikä tahansa sovellus voisi vaihtaa käyttäjää. Tämä muodostuisi tietoturvariskiksi, jos asettavan sovelluksen oma tietoturva ei olisi riittävä. Käyttäjätunnusta asettavan luotettavan sovelluksen tietoturvan onkin oltava kunnossa, ettei kuka tahansa pääse kirjautumaan haluamanaan henkilönä sovellukseen. Jos tämä olisi mahdollista, voisi kuka tahansa ilmoittaa kontekstinhallintaan minä käyttäjänä haluaa. Tämän jälkeen tämä käyttäjä voisi päästä helposti käsiksi mihin tahansa tietoihin samaa kontekstia käyttävissä järjestelmissä.

[bookmark: _Toc122836214]Kontekstin tuhoaminen

Konteksti tuhoutuu, kun viimeinen sovellus lähtee kontekstista. Konteksti on suositeltavaa tuhota myös tilanteessa, jossa sovellus (luotettu sovellus), joka on asettanut käyttäjätunnuksen, ilmoittaa poistuvansa kontekstista. Näin varmistutaan, että kontekstiin ei jää roikkumaan käyttäjäkontekstia ja että uudet sovellukset eivät saa kontekstista virheellistä käyttäjätunnusta todellisen käyttäjän jo poistuttua. Palvelinpohjaisessa kontekstinhallinnassa konteksti tuhotaan myös, jos kaikkien siihen liittyneiden sovelluksien katsotaan poistuneen aikakatkaisuajan tultua täyteen.

[bookmark: _Toc122836215]Sessioavaimen yksilöllisyys

Sessioavainten yksilöllisyys voidaan varmistaa pyytämällä kontekstipalvelinta luomaan sessioavaimet CreateSession-metodilla. Jos kontekstipalvelin ei itse huolehdi yksilöllisten sessioavainten luomisesta, pitää kontekstipalvelinta kutsuvien sovellusten varmistua siitä, että ne eivät voi luoda päällekkäisiä sessioavaimia.

On kuitenkin suositeltavaa käyttää aina CreateSession-metodia kontekstin ja sessioavaimen luomiseen. Siirtymävaiheessa, jossa on olemassa rinnakkain aikaisempien kontekstimääritysten ja tämän määrityksen mukaisia toteutuksia, voidaan sessioavain luoda muuallakin kuin kontekstipalvelimessa.

[bookmark: _Toc122836216]Käyttäjätunnuksen yksilöllisyys

Järjestelmien kontekstiin asettamien käyttäjätunnusten on oltava aina yksilöllisiä siten, ettei kaksi eri järjestelmää voi käyttää samaa tunnusta käyttäjän yksilöintiin ellei kyse todella ole samasta käyttäjästä. Tämän vuoksi kontekstissa ei pitäisi suoraan käyttää sitä käyttäjätunnusta, jonka käyttäjä kirjoittaa ohjelmaa käynnistäessään.

[bookmark: _Toc122836217]Sovellustunnusten yksilöllisyys

Sovellustunnuksen on yksilöitävä sovelluksen ilmentymä. Mikään ei estä käyttämästä kontekstipalvelimessa sovelluksen tunnisteena esim. OID-koodia. Tunnisteina voidaan käyttää myös yksinkertaisia sovellusnimiä, jos näillä voidaan varmistua, että ne yksilöivät tiettyä sovellusta.

[bookmark: _Toc122836218]Työpöytäintegraation tietoturvariskit

[bookmark: _Toc122836219]Osapuolten identiteetti

Jos kontekstipalvelun ja siihen liittyvien järjestelmien identiteettiä ei voida varmistaa, on siitä seurauksena ainakin seuraavat riskit:
· vihamielinen kolmas osapuoli voi esiintyä kontekstipalveluna ja asettaa kontekstiin haluamiaan kontekstitietoja.

Esimerkiksi käyttäjäkontekstin osalta tämä on iso riski, sillä vihamielinen sovellus voisi asettaa kontekstiin haluamansa käyttäjän käyttäjätunnuksen. Kontekstipalveluun liitettävä toinen sovellus hakisi kontekstista tämän vihamielisen osapuolen asettaman ja ylläpitämän käyttäjäkontekstin ja aukaisisi itsensä kontekstissa olevan käyttäjätunnuksen mukaiselle käyttäjälle. Näin vihamielisen kolmannen osapuolen olisi mahdollista saada toinen sovellus auki minä tahansa käyttäjänä.

· vihamielinen kolmas osapuoli voi esiintyä käyttäjäkontekstia asettavana sovelluksena ja asettaa kontekstiin haluamansa käyttäjän käyttäjätunnuksen.

Jälleen riskinä olisi vihamielisen kolmannen osapuolen mahdollisuus saada toinen sovellus auki minä tahansa käyttäjänä.

· vihamielinen kolmas osapuoli esiintyy kontekstia hakevana sovelluksena: tämä ei sinällään ole niin suuri tietoturvariski, jos kontekstissa ei arkaluonteista tietoa.

[bookmark: _Toc122836220]Tiedon eheys

Jos kontekstipalvelun ja siihen liittyvien järjestelmien välisten kontekstiviestien tietojen eheyttä ei varmisteta, on siitä seurauksena ainakin seuraava riski:
· vihamielinen kolmas osapuoli voi manipuloida kontekstitietoja kontekstinhallintaan liittyneen järjestelmän ja kontekstipalvelun välissä. Näin kolmannen osapuolen on jälleen mahdollista saada välitettyä joko kontekstipalvelulle tai kontekstinhallintaan liittyneelle järjestelmälle suoraan haluamiaan tietoja ja saada kontekstia hyödyntävät sovellukset aukaisemaan tietoja joita ei pitäisi.

[bookmark: _Toc122836221]Liikenteen salaus

Jos kontekstissa on arkaluonteista tietoa ja kontekstipalvelun ja järjestelmien välistä yhteyttä ei salata, voivat tiedot joutua vääriin käsiin.

[bookmark: _Toc122836222]Tietoturvaratkaisu

Tämä kappale kuvaa, kuinka kontekstipalvelimen ja siihen liittyvien sovellusten välinen tietoturva voidaan toteuttaa. Tietoturvan takaamiseksi kaikki osapuolet, niin kontekstipalvelu kuin siihen liittyvät järjestelmät, on tunnistettava luotettavasti ja varmistettava myös kontekstitiedon eheys. Tällöin kontekstipalvelu voi olla varma, että se on yhteydessä oikeaan sovellukseen, eikä asetettavia tietoja ole manipuloitu. Vastaavasti kontekstia asettava tai hakeva sovellus voi olla varma, että on yhteydessä oikeaan kontekstipalveluun ja että kontekstipalvelun palauttamat tiedot ovat oikeita.

Kontekstinhallinnan minimitoteutuksessa toteutettava tietoturva varmistetaan käyttämällä kaksisuuntaista SSL-protokollaa http-protokollan alla. SSL (Secure Sockets Layer) on tekniikka, jolla voidaan toteuttaa varmennepohjainen tietoturvaratkaisu. Kaksisuuntaisella SSL-tekniikalla kontekstipalvelu ja siihen liittyvät järjestelmät voivat varmistaa
· toistensa identiteetit
· kontekstitiedon eheyden sekä
· toteuttaa tietojen salauksen.

Näin kontekstipalvelimen ja siihen liittyvien järjestelmien välinen http-liikenne on suojattua (kuva 7).

Kuva 7. SSL-yhteys kontekstipalvelun ja järjestelmien välillä.

On huomioitava, että SSL:ssä käytettävät varmenteet ovat tässä ratkaisussa sovelluskohtaisia varmenteita ja ne siis yksilöivät tietyn sovelluksen, ne eivät yksilöi käyttäjää eivätkä työasemaa. Sovelluksen varmenne voidaan jakaa saman sovelluksen eri sovellusesiintymien kesken.

Organisaation sisäisen kontekstinhallinnan tietoturvan yhdenmukaisessa ratkaisemisessa on ongelmana kahdenlaisten sovelluksien olemassaolo. Käytössä voi olla sekä työasemasovelluksia että web-sovelluksia. Web-sovellusten osalta varmennepohjainen ratkaisu on yksinkertainen tapa toteuttaa tietoturva palvelimien väliseen liikenteeseen, sillä varmenteet tarvitsee jaella ainoastaan sovellusten web-palvelimille. Työasemasovellusten osalta varmennepohjainen ratkaisu tarkoittaa varmenteiden jakelua kaikille työasemalla oleville sovelluksille. Tällöin ongelmaksi nousee varmenteiden ylläpito ja hallinnointi. Asia voidaan kiertää esimerkiksi toteuttamalla työasemasovelluksen ja kontekstipalvelimen välille välitysohjelma (kuva 8).

Kuva 8. Välitysohjelman käyttö työasemasovelluksen ja kontekstipalvelun välillä.

Välitysohjelma toimii työasemasovelluksen ja kontekstipalvelun välissä. Työasemasovelluksen ja välitysohjelman välinen liikenne voidaan toteuttaa esimerkiksi käyttämällä http/https-yhteyttä ja minimikontekstinhallinnan määrityksen mukaisia kutsuja tai käyttämällä sovelluspalvelinta ja sen tukemia kutsutapoja. Välitysohjelman toteuttaminen on kuitenkin sovelluskohtaista ja tämän määrityksen ulkopuolella.

[bookmark: _Toc122836223]Palvelinpohjainen kontekstinhallinta

Tähän mennessä tässä dokumentissa käydyt määrittelyt ovat olleet tekniikkariippumattomia. Tässä luvussa käytävät määrittelyt ovat web-tekniikalle.

[bookmark: _Toc122836224]Arkkitehtuuri

Kuvassa 9 esitellään arkkitehtuuri, jolla on mahdollista toteuttaa palvelinpohjaista kontekstinhallintaa, jossa on mukana sekä työasemasovelluksia että web-sovelluksia.

Kuva 9. Palvelinpohjainen arkkitehtuuri.

Sovellus / Web-sovellus
Mikä tahansa terveydenhuolto-organisaation tietojärjestelmäkokonaisuuden osa, joka on tarkoitettu tietyn erityisen osatoiminnan tukemiseen. Voi olla erillinen kliininen tai potilashallinnollinen sovellus tai osa laajempaa kokonaisjärjestelmää, kertomusjärjestelmä, portaali, aluetietojärjestelmä, yms.

WWW-palvelin
	WWW-palvelin, joka jakelee ja ylläpitää Web-erillissovelluksien sivuja.

http-yhteyskomponentti
Komponentti tai muu vastaava ohjelmakirjasto (liitin), joka osaa lähettää http(s)-sanoman ja vastaanottaa palautetun viestin.

http-keskustelija
Esimerkiksi WWW-palvelin tai muu yksinkertaisempi komponentti joka osaa vastaanottaa http(s)-viestejä ja palauttaa vastauksen kutsujaosapuolelle.

Kontekstinhallintapalvelutoteutus
Ohjelmakomponentti, luokka tai muu kokonaisuus, joka sisältää itse palvelun toteutuksen eli toteuttaa palvelurajapinnan.

Palvelurajapinta
Ohjelmistorajapinta, jonka kautta sovellus tarjoaa ohjelmistopalveluita (operaatioita, suorittaa tehtäviä) toiselle sovellukselle.

Palvelua käyttävä sovellus kutsuu palvelun toteutuksen tarjoamia operaatioita http-protokollan avulla. Palvelun toteutus muodostuu http-palvelimesta (esim. web-palvelin) sekä palvelun sisällöstä vastaavasta sovelluksesta. Palvelua käyttävissä sovelluksissa on tieto siitä, missä osoitteessa palvelun toteutus on, ja niihin on toteutettu http-yhteyttä hyödyntävä osa tai sovitin, joka ottaa yhteyttä palvelun toteutukseen. Palvelun osoite voidaan myös parametrisoida sovellukseen tarvittaessa.

Sovellus voi tehdä palvelukutsun itse tai sen voi hoitaa erillinen palvelun tarjoajan rakentama http-yhteyskomponentti (liitin), joka kapseloi palvelurajapinnan käytön. Palvelua käyttävässä sovelluksessa tai liittimessä huolehditaan tarvittavien parametrien asettamisesta palvelupyyntöihin sekä tulleiden vastausten käsittelystä.

Palvelutoteutuksen rajapinta toimii kokonaisuudessaan synkronisella kysely-vastaus-periaatteella. Se tarkoittaa sitä, että palvelu vastaa yhteen kyselyyn (ts. palvelun jonkun operaation kutsumiseen) kerrallaan välittömästi yhdellä vastauksella. Itse palvelut suunnitellaan toimivaksi siten, että ne voivat ottaa tilattomuudestaan johtuen palvelukutsuja vastaan ilman jonoa.

[bookmark: _Toc122836225]Tekniikka

Viestinvälityksessä käytetään teknisenä standardina HTTP-protokollaa yksinkertaisin string-parametrein. HTTP -protokolla on yksinkertainen hajautettujen palvelujen kutsuun soveltuva tekniikka. Se on laajassa käytössä oleva www-tekniikka.

Tekniikan tulee mahdollistaa hajautettu rajapinta eli palvelua (esim. potilaan perustietoja) tarjoava sovellus sisältää palvelinosan (Server), johon asiakas (Client) ottaa yhteyden verkon yli. Palvelinosa voi sijaita esimerkiksi web-palvelimella. Tekninen ratkaisu on asiakkaan kannalta synkronoitua toiminnallisuutta, jossa palvelun pyytäjä jää odottamaan vastausta palvelinosalta, joka palauttaa vastauksen välittömästi. Palvelun toteuttajan (palvelinosan) on kuitenkin kyettävä ottamaan vastaan useita yhtäaikaisia tai peräkkäisiä kutsuja eri asiakkailta. Palvelujen (URL-muotoisen) kutsuosoitteen pitää olla parametrisoituna sovelluksessa.

Varsinkin siirtyminen Web-ympäristöön aiheuttaa lisävaatimuksia turvallisuuden suhteen, esimerkiksi kontekstinhallintaa käyttävien työasemien erottaminen toisistaan vaikeutuu huomattavasti ja vaatii lisätoiminnallisuutta. Työasemat voidaan erottaa toisistaan ip-osoitteen perusteella. ip-osoitteen sijasta voidaan käyttää myös työasemaa identifioivaa sessioavainta.

[bookmark: _Toc122836226]Tietoturva

Kontekstinhallinnan minimitoteutuksessa tietoturva on varmistettava käyttämällä kaksisuuntaista SSL-protokollaa http-protokollan alla kuten luvussa 7 kuvattiin. Tämän avulla kontekstipalvelin ja siihen liittyvät järjestelmät voivat luotettavasti varmistaa toistensa identiteetin ja siirrettävän tiedon eheyden sekä lisäksi salata siirrettävän tiedon. SSL:n avulla turvallisuusnäkökohtia ei tarvitse ottaa huomioon viestien sisältöä suunniteltaessa, koska sen tarjoama turvallisuus toimii alemmalla protokolla-tasolla.

[bookmark: _Toc122836227]Pollaukset

Palvelinpohjaisessa ratkaisussa on otettava huomioon seuraavat kaksi web-tekniikasta seuraavaa ongelmaa:
· Mikäli kontekstinhallintapalvelussa on ongelmia, esim. palvelu itse kaatunut, palvelin on kaatunut, on sovelluksen osattava toimia ilman kontekstinhallintaa.
· Mikäli kontekstinhallintaan liittyneessä sovelluksessa on ongelmia, esim. web-palvelimella oleva sovellus on kaatunut tai palvelin on kaatunut, muodostuu ongelmaksi kontekstinhallintapalveluun roikkumaan jäävät turhat sovellukset. Kontekstinhallintapalvelu mahdollisesti olettaa, että kontekstia pitää vielä pitää yllä, koska kaikki sovellukset eivät ole eronneet kontekstinhallinnasta.

Yksi keino ensimmäisen ongelman ratkaisuun on toteutettavissa nykyisillä metodeilla. Sovellus kutsuu esim. GetItemValues-metodia ja jos kontekstipalvelin vastaa kutsuun, voi sovellus varmistua sen toiminnasta.

Toinen ongelma on ratkaistavissa aikakatkaisulla. Tällöin kontekstinhallintaan määritellään sovellukselle aikaleima, jonka voimassaoloa kontekstipalvelin tarkistaa. Jos sovelluksen palvelulle lähettämien kyselyjen välillä kuluu enemmän aikaa kuin sille on määritelty aikakatkaisuksi, voidaan sovellus katsoa suljetuksi ja poistaa kontekstinhallinnasta.

[bookmark: _Toc122836228]Metodit http-viesteillä

Minimitoteutuksessa käytetään CCOW-standardissa esitettyä tapaa muodostaa metodi-kutsut ja vastaukset näihin metodeihin HTTP-viestein. CCOW-standardissa tämä on kuvattu dokumentissa ”Component Technology Mapping: Web/http” (Seliger 2002a).

[bookmark: _Toc122836229]HTTP GET / POST-viestit

Kontekstinhallintapalvelu ottaa vastaan HTTP POST/GET-viestejä siihen liittyneiltä sovelluksilta. Näin sovellukset saavat lähettää kontekstinhallintapalvelulle HTTP POST/GET-viestejä. POST-metodi poikkeaa GET-metodista siten, että POST-metodissa kutsutaan ensin palvelua ja lähetetään vasta sitten parametrit viestin body-osassa. GET-metodissa parametrit liitetään palvelukutsuun osoitteen perään erotettuna ”?”-merkillä.

[bookmark: _Toc122836230]MIME-header

Kontekstinhallintapalvelun palauttamien tietojen content-type:nä ovat text/plain ja application/x-www-form-urlencoded. Kontekstinhallintapalvelun on tuettava näitä kahta content-typea. Sovellus voi ilmoittaa hyväksymänsä content-type:n palvelukutsun accept-headerissa. Jos sovellus ei aseta accept-headeria, palvelimen pitää palauttaa tiedot text/plain-muodossa. Näin PlugIT:n aikaisen minimikontekstinhallintamäärityksen mukainen sovellus toimii myös application/x-www-form-urlencoded content-type:n toteuttavan palvelimen kanssa. Tämä helpottaa myös sellaisten sovellusten toteutusta, jotka eivät tarvitse tietojen koodausta.

Content-type application/x-www-form-urlencoded vaatii parametrien arvojen (merkit, jotka ovat yhtäkuin-merkin (=) oikealla puolella) koodausta yhteisesti sovitulla tavalla. IETF RFC 2396 standardissa, kappaleessa 2.4 on kuvattu tapa, jolla myös tämän määrittelyn parametrien arvot on koodattava. Standardi löytyy osoitteesta http://www.ietf.org/rfc/rfc2396.txt. Lyhyt tiivistelmä arvojen koodauksesta:
Muodostetaan tavallisista (US-ASCII) aakkosista, numeroista ja joistakin erikoismerkeistä.
ASCII-merkit ‘a’ - ‘z’, ‘A’ - ‘Z’ ja ‘0’ - ‘9’ pysyvät samana.
Tyhjä välilyönti ‘ ’ pitää konvertoida plus-merkiksi ‘+’ tai %20-merkinnällä.
Kaikki muut merkit pitää konvertoida 3-merkkiseksi stringiksi “%xy”. Tällöin merkki esitettään %-merkillä ja kahdella heksadesimaaliluvulla.(xy).

Kyselyissä ja vastauksissa käytetään aina merkistöä ISO-8859-1.

[bookmark: _Toc122836231]Http-kutsun muodostaminen

Seuraavassa esimerkki viestin muodostamisesta eri osineen:

http://url.fi/cm?interface=ContextManager&method=JoinCommonContext¶m1= . . .

 (
Kutsuttava
rajapinta
) (
Kutsuttava metodi
) (
Kutsun
parametrit
) (
Kutsuttavan
komponentin
URL-osoite
)

Tässä esimerkissä kutsuttaisiin osoitteessa http://url.fi/cm sijaitsevaa context manager-komponenttia, sen ContextManager rajapintaa ja tämän rajapinnan JoinCommonContext-metodia. Tätä viestiä tutkimalla context manager pystyisi käsittelemään kutsun ja suorittamaan tarvittavat toiminnot.

Seuraavassa ovat tärkeimmät http-kutsuille määritellyt säännöt:
· kutsuttavan rajapinnan nimi ilmoitetaan interface-parametrissa, esim.
”?interface=ContextManager”
· kutsuttavan metodin nimi ilmoitetaan method-parametrissa, esim.
”&method=”JoinCommonContext”
· jos parametrina kutsussa (tai vastauksessa) lähetetään taulukko, erotellaan siinä olevat arvot ”|” – merkeillä, esim. ”&itemNames=Patient.ID.MRN.CCOW|User.ID.Logon.hospitalX”
· jos input-parametrina lähetetään null-arvo, sille ei määritellä arvoa, esim. ”&contextCoupon=”
· tyhjä merkkijonoarvo lähetetään samalla tavalla kuin null-arvo (ei arvoa)
· tyhjä taulukko lähetetään samalla tavalla kuin null-arvo (ei arvoa)
· jos kutsuttavaa rajapintaa ei ole toteutettu kontekstinhallintapalveluun, pitää palauttaa GeneralFailure-poikkeus
· jos kutsuttavaa metodia ei ole toteutettu kontekstinhallintapalveluun, pitää palauttaa NotImplemented-poikkeus
· jos kutsussa olevaa parametria ei tunneta, pitää kontekstinhallintapalvelun olla välittämättä parametrista.
· jos vaadittava parametri puuttuu kutsusta, pitää kontekstinhallintapalvelun palauttaa GeneralFailure-poikkeus.

[bookmark: _Toc122836232]Paluuarvon muodostaminen

[bookmark: _Toc55922752]Kutsutun metodin output-parametrit koodataan HTTP vastauksen body-osaan. Paluuarvojen content-type:nä ovat text/plain ja application/x-www-form-urlencoded.

HTTP-vastauksen header-osan pitää sisältää standardi http-vastaus: HTTP response code 200 (OK). Jos tilakoodi on jokin muu kuin 200, mahdollinen vastaus ei tule kontekstinhallintapalvelulta vaan sitä suorittavalta palvelimelta jonkin virheen seurauksena.

[bookmark: _Toc122836233]Poikkeukset

Poikkeukset koodataan samalla tavoin kuin output-parametrit:

· itse poikkeus annetaan parametrin exception arvoksi, exception=ExceptionName
· jos poikkeuksen viesti sisältää myös muita osia erotellaan ne &-merkillä, exception=BadItemValue&itemName=Patient.Co.Sex&itemValue=G&reason=Must be F, M, O or U
· poikkeuksien parametrina voi olla myös vapaavalintainen exceptionMessage, esim. exceptionMessage=explanation. Tässä explanation-osa eli virheen selitys on toteutuskohtaisesti toteutettavissa, standardi ei määrittele valmiita selityksiä.
· esimerkiksi exception=AlreadyJoined&exceptionMessage=Sovellus on jo liittynyt kontekstinhallintaan (exception=GeneralFailure&exceptionMessage=message).

[bookmark: _Toc122836234]CM (ContextManager-rajapinta)

Seuraavaksi käydään läpi minimitoteutuksessa tarvittavat rajapinnat ja niiden kutsuminen http-viesteillä. Metodit on muodostettu näihin CCOW-standardin version 1.4 web-osion pohjalta. Tämän kappaleen http-viesteissä poikkeuksia ei ole enää lisätty parametri-taulukoihin. Ne ovat saatavilla tekniikkariippumattoman osan rajapintakuvauksissa (ks. luku 6).

[bookmark: _Toc122836235]CreateSession

HUOM!!! Tämä ei ole CCOW-standardin mukainen metodi!!!

Tätä metodia kutsumalla sovellus voi pyytää kontekstinhallintapalvelulta yksilöllisen tunnuksen eli sessioavaimen kontekstille. Sessioavainta käyttäen kontekstiin on mahdollista myöhemmin liittyä käyttäen JoinCommonContext-metodia.

Sovellus voi haluttaessa ilmoittaa input-parametrilla applicationName nimensä tiedoksi kontekstinhallinnalle. Koordinaattorille voidaan näin konfiguroida haluttaessa etukäteen sovellukset, jotka voivat pyytää sessioavaimen luomista. Input-parametria hostAddress käyttämällä konteksti voidaan haluttaessa rekisteröidä annettuun osoitteeseen. Parametria käyttämällä voidaan sallia sovellusten liittyminen työasemalta sekä ip-osoitteella että sessioavaimella. On huomioitava, että tämä lähestymistapa ei käy, kun samalta työasemalta on tarve käynnistää useita sessioita.

Kontekstinhallintapalvelu palauttaa sovellukselle sessionKey-tunnisteen.

				HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“CreateSession”

	Optional Parameters
	
	

	applicationName
	string
	Sovelluksen nimi.

	hostAddress
	string
	Työaseman ip-osoite.

	HTTP Reply Message

	sessionKey
	string
	Työaseman kontekstisessiosta identifioiva sessioavain.

CreateSession

Kutsu https-viestinä (ilman valinnaisia nimi-arvopareja):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=CreateSession

Paluuarvona sessionKey
sessionKey = MCM:4944F983A11F73946816C92B0C33E91D59@EDSPC31V

Kutsu https-viestinä (valinnaisella applicationName-parametrilla):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=CreateSession&applicationName=LoginMaster

Paluuarvona sessionKey
sessionKey = MCM:4944F983A11F73946816C92B0C33E91D59@EDSPC31V

Kutsu https-viestinä (molemmilla valinnaisilla parametreilla):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=CreateSession&applicationName=LoginMaster&hostAddress=193.167.225.67

Paluuarvona sessionKey
sessionKey = MCM:4944F983A11F73946816C92B0C33E91D59@EDSPC31V
[bookmark: _Toc122836236]JoinCommonContext

Tätä metodia kutsumalla sovellus ilmaisee kontekstihallinta-komponentille, että se haluaa liittyä kontekstinhallintaan. Input-parametreina ovat applicationName, jossa on liittyvän sovelluksen nimi sekä valinnaisia parametreja (kuvattu kappaleessa 6.2.2). Kontekstinhallinta-komponentti palauttaa sovellukselle participantCoupon-tunnisteen.

				HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“JoinCommonContext”

	applicationName
	string
	

	Optional Parameters
	
	

	hostAddress
	string
	Työaseman ip-osoite.

	sessionKey
	string
	Työaseman kontekstisessiosta identifioiva sessioavain.

	HTTP Reply Message

	participantCoupon
	long
	

JoinCommonContext

Kutsu https-viestinä (ilman valinnaisia nimi-arvopareja):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContext&applicationName=LoginMaster

Paluuarvona participantCoupon
participantCoupon=2500131

Kutsu https-viestinä (valinnaisella hostAddress-parametrilla):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContext&applicationName=LoginMaster&hostAddress=193.167.225.67

Paluuarvona participantCoupon
participantCoupon=2500131

Kutsu https-viestinä (valinnaisella sessionKey-parametrilla):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContext&applicationName=LoginMaster&sessionKey=1234567890

Paluuarvona participantCoupon
participantCoupon=2500131

Kutsu https-viestinä (molemmilla valinnaisilla parametreilla):
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContext&applicationName=LoginMaster&hostAddress=193.167.225.67&sessionKey=1234567890

Paluuarvona participantCoupon
participantCoupon=2500131

Käytettäessä JoinCommonContext-metodia optionaalisilla parametreilla, poistuu myös tarve JoinCommonContextWithIp-metodille. Palvelintoteutusten on kuitenkin huomioitava se, että JoinCommonContextWithIp-metodia on jo käytetty toteutuksissa. Palvelinten tulisi näin tukea metodia JoinCommonContextWithIp. Tämä voidaan toteuttaa esim. ohjaamalla JoinCommonContextWithIp-kutsu edelleen yleiskäyttöisemmän JoinCommonContext-metodin käsiteltäväksi.

[bookmark: _Toc122836237]JoinCommonContextWithIp

HUOM!!! Tämä ei ole CCOW-standardin mukainen metodi!!!

HUOM!!! Tämän metodin käyttöä ei enää suositella, vaan ip-osoite pitäisi välittää JoinCommonContext-metodin hostAddress-parametrissa. !!!

Web-sovelluksien osalta JoinCommonContext-metodissa huomioitava ip-osoitteen välittäminen. Kun työasemasovellus on yhteydessä palvelimella olevaan kontekstinhallintaan, työaseman ip-osoite on mahdollista selvittää sovelluksen ja kontekstinhallinnan välisistä kutsuista. Web-sovellusten osalta tämä ei ole mahdollista näin yksinkertaisesti. Web-palvelimella oleva sovellus kyllä saa työaseman osoitteen mutta se on välitettävä myös kontekstinhallinnalle. Näin on tarpeellista saada välitettyä web-sovellusta käyttävän työaseman IP-osoite. Tätä varten web-sovellusten kontekstinhallintaan liittymistä varten on erillinen metodi, jossa yhtenä parametrina on myös työaseman IP-osoite.

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	interface
	string
	“ContextManager”

	Method
	string
	“JoinCommonContextWithIp”

	applicationName
	string
	

	hostAddress
	string
	Client's tcp/ip address

	HTTP Reply Message

	participantCoupon
	long
	

JoinCommonContextWithIp

Kutsu https-viestinä:
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContextWithIp&applicationName=LoginMaster&hostAddress=193.167.225.67

Paluuarvona participantCoupon
participantCoupon=2500131

[bookmark: _Toc122836238]LeaveCommonContext

Tätä metodia kutsumalla sovellus ilmaisee kontekstinhallinta-komponentille, että se haluaa erota kontekstinhallinnasta. Input-parametrina käytetään participant coupon tunnistetta, jonka sovellus sai liittyessään kontekstinhallintaan (JoinCommonContext).

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“LeaveCommonContext”

	participantCoupon
	long
	

	HTTP Reply Message

	Empty
	
	

LeaveCommonContext

Kutsu https-viestinä:
https://127.0.0.1:8080/cm.psp?interface=ContextManager&method=LeaveCommonContext&participantCoupon=2500131

[bookmark: _Toc122836239]CD (ContextData-rajapinta)
[bookmark: _Toc122836240]SetItemValues

Tätä metodia kutsumalla sovellus asettaa kontekstinhallinta-komponentin ylläpitämään kontekstiin kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, asetettavien tietojen nimet sekä asetettavien tietojen arvot. Huom. id-tietojen asettamisen pakollisuus (ks. kappale 6.3.1 SetItemValues).

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	interface
	string
	“ContextData”

	Method
	string
	“SetItemValues”

	participantCoupon
	long
	

	itemNames
	string[]
	

	itemValues
	string[]
	

	HTTP Reply Message

	Empty
	
	

SetItemValues

Kutsu https-viestinä:
https://127.0.0.1:8080/cm.psp?interface=ContextData&method=SetItemValues&participantCoupon=2500131&itemNames=User.Id.Logon&itemValues=mituomai

tai kaikki asetettavat tiedot kerralla:
https://127.0.0.1:8080/cm.psp?interface=ContextData&method=SetItemValues&participantCoupon=2500131&itemNames=User.Id.Logon|Patient.Id.NationalIdNumber&itemValues=mituomai|230474-xxxx

[bookmark: _Toc122836241]GetItemValues

Tätä metodia kutsumalla sovellus hakee kontekstinhallinta-komponentin ylläpitämästä kontekstista kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, sekä haettavien tietojen nimet. Paluuarvona sovellus saa haettavien tietojen arvot, jos niitä on löytynyt kontekstista. Huom. id-tietojen hakemisen pakollisuus (ks. kappale 6.3.2 GetItemValues).

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextData”

	Method
	string
	“GetItemValues”

	participantCoupon
	long
	

	itemNames
	string[]
	

	HTTP Reply Message

	itemValues
	string[]
	

GetItemValues

Kutsu https-viestinä:
https://127.0.0.1:8080/cm.psp?interface=ContextData&method=getItemValues&participantCoupon=2500131&itemNames=Patient.Id.NationalIdNumber

Paluuarvona hetu:
itemValues=Patient.Id.NationalIdNumber|230474-xxxx

tai kaikki kontekstin tiedot kerralla:
https://127.0.0.1:8080/cm.psp?interface=ContextData&method=getItemValues&participantCoupon=2500131&itemNames=Patient.Id.NationalIdNumber|User.Id.Logon

Paluuarvona hetu & käyttäjätunnus:
itemValues=Patient.Id.NationalIdNumber|230474-xxxx|User.Id.Logon|mituomai

[bookmark: _Toc122836242]Alueellinen kontekstinhallinta

Alueellisen kontekstinhallinnan suurin haaste liittyy tietoturvaan. Organisaation ulkopuoliset järjestelmät eivät sijaitse samassa sisäverkossa organisaatioiden omien järjestelmien kanssa. Järjestelmät ja niiden käyttämät tietoliikenneverkot ovat näin eri organisaatioiden hallinnoimia ja ylläpitämiä. Mitä laajemmassa verkossa toimitaan, sitä enemmän tietoturvaan joudutaan kiinnittämään huomiota.

Luvun 7 tietoturvaratkaisussa kuvattiin jo kontekstipalvelun ja organisaation ulkopuolisen järjestelmän välistä tietoturvaa. Tarvittava tietoturva on toteutettavissa kaksisuuntaisen SSL-ratkaisun avulla. Liitettäessä organisaation ulkopuolista järjestelmää organisaation sisäiseen kontekstipalveluun on lisäksi ratkaistava, kuinka sessioavain saadaan välitettyä ulkopuoliselle järjestelmälle. Tässä luvussa kuvataan kokonaisratkaisu organisaation ulkopuolisen järjestelmän liittämiseksi turvallisesti organisaation sisäiseen kontekstipalveluun sovelluksen avauksen yhteydessä.

Ratkaisu, joka tässä luvussa kuvataan, ei estä myöskään organisaatioiden yhteisen kontekstipalvelimen käyttöä ja samaa tietoturvaratkaisua voidaan hyödyntää myös tällaisessa tilanteessa.

[bookmark: _Toc122836243]Alueellisen kontekstinhallinnan osapuolet
[bookmark: _Toc122836244]Kontekstipalvelin

Alueellisessa kontekstinhallinnassa tietoja välitetään sovellusten välillä pääasiassa kontekstipalvelimen kautta. Kontekstipalvelin voi toimia sisä- tai ulkoverkossa. Kontekstipalvelin tunnistaa kaksisuuntaista SSL-yhteyttä käyttämällä kontekstiin liittyvät sovellukset ja tarkistaa, että niillä on oikeus käsitellä kontekstin sisältämiä tietoja. Kontekstipalvelimella on näin suuri vastuu tietoturvan toteuttamisesta.

[bookmark: _Toc122836245]Organisaation sisäinen, kontekstin luova järjestelmä

Terveydenhuollon organisaation käyttämä sisäinen järjestelmä, esim. perusjärjestelmä, toimii organisaation sisäverkossa. Perusjärjestelmä tunnistaa käyttäjän järjestelmää käynnistettäessä. Perusjärjestelmä luo kontekstipalvelimelle uuden kontekstin, liittyy siihen ja asettaa käyttäjän kontekstiin.

Perusjärjestelmästä käsin voidaan käynnistää muita sovelluksia. Jos ne halutaan saada liitetyksi samaan kontekstiin, pitää perusjärjestelmän välittää kontekstin yksilöivä sessioavain käynnistetylle sovellukselle. Sessioavaimen välitys sovelluksen avauksen yhteydessä on kuvattu kappaleessa 9.4.

[bookmark: _Toc122836246]Organisaation ulkopuolinen järjestelmä

Työpöytäintegraatiossa organisaation ulkopuolinen järjestelmä, esim. selainkäyttöinen erillisjärjestelmä tai aluetietojärjestelmä, toimii organisaation ulkopuolisessa verkossa. Ulkopuolinen järjestelmä käynnistetään perusjärjestelmästä käsin välittäen parametrina kontekstin yksilöivä sessioavain. Organisaation ulkopuolinen järjestelmä liittyy samaan kontekstipalvelimen istuntoon ja saa tietoonsa perusjärjestelmän kontekstiin tallentamat käyttäjä- ja potilastiedot. On huomioitava, että organisaation ulkopuolinen järjestelmä voi käynnistää muita ulkopuolisia järjestelmiä ja välittää niille sessioavaimen edelleen.

Organisaation ulkopuolista järjestelmää on oltava mahdollista käyttää myös ilman kontekstinhallintaa kirjautumalla siihen suoraan.

[bookmark: _Toc122836247]Organisaation sisäinen, kontekstiin liittyvä sovellus

Terveydenhuollon organisaation käyttämä sisäinen järjestelmä, joka toimii organisaation sisäverkossa. Sisäinen järjestelmä käynnistetään esim. perusjärjestelmästä käsin välittäen parametrina kontekstin yksilöivä sessioavain. Organisaation sisäinen järjestelmä liittyy samaan kontekstipalvelimen istuntoon ja saa tietoonsa perusjärjestelmän kontekstiin tallentamat käyttäjä- ja potilastiedot. On huomioitava, että organisaation sisäinen järjestelmä voi käynnistää muita ulkopuolisia järjestelmiä ja välittää niille sessioavaimen edelleen.

Organisaation sisäistä järjestelmää on oltava mahdollista käyttää myös ilman kontekstinhallintaa kirjautumalla siihen suoraan.

[bookmark: _Toc122836248]Alueellisen käytön erityisvaatimuksia
[bookmark: _Toc122836249]Monta kontekstipalvelinta

Terveydenhuollon organisaatioilla on usein omia sisäisiä työpöytäintegraatiotarpeita alueellisen työpöytäintegraation ohella. Tämän vuoksi niillä voi olla oma paikallinen kontekstipalvelimensa. Toisaalta määritykset eivät estä myöskään organisaatioiden yhteisen kontekstipalvelimen käyttöä. Organisaation ulkopuolisen järjestelmän, esim. aluetietojärjestelmän näkökulmasta sen toiminta-alueella on todennäköisesti käytössä useita erillisiä kontekstipalvelimia. Organisaatioiden perusjärjestelmät käyttävät aina jotain tiettyä kontekstipalvelinta, mutta organisaation ulkopuolisen järjestelmän tulee osata valita käytettävä kontekstipalvelin sen mukaan mistä organisaatiosta sitä kutsutaan.

[bookmark: _Toc122836250]Sessioavainten yksilöllisyys

Jos kontekstipalvelin on alueellisessa käytössä, uusia konteksteja on mahdollista luoda useista eri järjestelmistä käsin. Verkkoratkaisuista riippuen on mahdollista, että kahden eri organisaation työaseman ip-osoite on sama. Näin voi käydä erityisesti käytettäessä 10-sarjan sisäisiä osoitteita. Tällöin ei siis ole turvallista käyttää ip-osoitetta kontekstin yksilöintiin. Ratkaisuna on ns. sessioavainten käyttö. Sessioavainten osalta joudutaan varmistumaan niiden yksilöllisyydestä. Sessioavainten yksilöllisyys voidaan varmistaa pyytämällä kontekstipalvelinta luomaan sessioavaimet CreateSession-metodilla. Jos kontekstipalvelin ei itse huolehdi yksilöllisten sessioavainten luomisesta, pitää kontekstipalvelinta kutsuvien sovellusten varmistua siitä, että ne eivät voi luoda päällekkäisiä sessioavaimia.

[bookmark: _Toc122836251]Käyttäjätunnuksen yksilöllisyys

Organisaation ulkopuolisen järjestelmän kannalta on tärkeää, että eri järjestelmien kontekstiin asettamat käyttäjätunnukset ovat aina yksilöllisiä siten, ettei kaksi eri järjestelmää voi käyttää samaa tunnusta käyttäjän yksilöintiin ellei kyse todella ole samasta käyttäjästä. Tämä vaatimus pätee riippumatta siitä käyttävätkö esim. perusjärjestelmät yhteistä tai omaa kontekstipalvelinta. Myöskään saman sovelluksen eri ilmentymät eivät saa käyttää käyttäjistä päällekkäisiä tunnisteita. Tämän vuoksi kontekstissa ei pitäisi suoraan käyttää sitä käyttäjätunnusta, jonka käyttäjä kirjoittaa ohjelmaa käynnistäessään.

Käyttäjätunnus pitää täydentää sovelluksen ilmentymän yksilöivällä tunnisteella. Tämä tunniste voi olla sama mitä käytetään sovelluksen tunnistamiseen kontekstipalvelimessa edellyttäen, ettei alueella käytössä olevissa muissa kontekstipalvelimissa käytetä samaa sovellustunnusta jollekin toiselle järjestelmälle. Jos käyttäjän tunnus esimerkiksi Kauniaisten käyttämässä perusjärjestelmässä olisi TOMMIR, voisi kontekstissa käytettävä tunnus olla TOMMIR@applicationName-Kauniainen. Muita vaihtoehtoja yksilöllisille kontekstiin tallennettaville käyttäjätunnuksille ovat esimerkiksi OID-koodit sekä GUID-tunnisteet. Myös ns. geneerisen id:n eli yhteisesti sovitun tunnisteen käyttö on mahdollista, tällöin on sovittava erikseen miten geneerinen id saadaan ja miten niitä hallinnoidaan. Olennaista tietenkin on, että samasta käyttäjästä käytetään aina samaa tunnistetta.

Vaatimus pohjautuu siihen, että organisaation ulkopuolinen järjestelmä ei voi luottaa juuri sitä kutsuvan sovelluksen tunnistaneen käyttäjän. Mitään teknistä estettä sille, että organisaation ulkopuolista järjestelmää kutsuttaisiin muustakin kuin vain tietystä perusjärjestelmästä käsin, ei ole. Perusjärjestelmä voi käynnistää ensin toisen sovelluksen, joka kytkeytyy samaan kontekstiin ja joka edelleen kutsuu organisaation ulkopuolista järjestelmää. Kutsuvan sovelluksen tunnistetta ei siten voi käyttää käyttäjän identifikaation osana. Käytettävän kontekstipalvelun osoite sen sijaan voisi periaatteessa toimia käyttäjiä erottelevana tekijänä. Alueellisen organisaation ulkopuolisen järjestelmän toteutuksen yksinkertaistamiseksi käyttäjätunnusten yksilöllisyysvaatimus kannattaa laajentaa kuitenkin koskemaan kaikkia alueella käytettäviä kontekstipalveluita ja sovelluksia.

[bookmark: _Toc122836252]Sovellustunnusten yksilöllisyys

Jotta organisaation ulkopuolinen järjestelmä tietäisi mistä sovelluksesta sitä kutsutaan ja pystyisi siten päättelemään mitä kontekstipalvelinta sen on käytettävä, on organisaation sisäisen järjestelmän välitettävä organisaation ulkopuoliselle järjestelmälle sovelluksen yksilöivä tunniste. Kyseisen tunnisteen on siis yksilöitävä sovelluksen ilmentymä. Eri organisaatioissa käytetty sama sovellus saa aina eri tunnisteen. Esimerkiksi Kauniaisten käyttämällä perusjärjestelmällä on oltava eri tunniste kuin Sipoon käyttämällä samalla perusjärjestelmällä. Tunnisteina voidaan käyttää esimerkiksi OID-koodia, GUID-tunnisteita tai samoja sovellusnimiä mitä kontekstipalvelimellakin käytetään. Mikään ei estä käyttämästä myös kontekstipalvelimessa sovelluksen tunnisteena OID-koodia.

[bookmark: _Toc122836253]Alueellisen kontekstinhallinnan vaiheet

Seuraavissa vaiheissa käytetään esimerkkeinä organisaation sisäisestä järjestelmästä perusjärjestelmää ja organisaation ulkopuolisesta järjestelmästä aluejärjestelmää.
[bookmark: _Toc122836254]Kontekstin luominen, liittyminen kontekstiin ja kontekstin asettaminen

Kuvassa 10 on kuvattu kontekstin luominen, liittyminen kontekstiin sekä kontekstin asettaminen.

Käyttäjä käynnistää perusjärjestelmän. Perusjärjestelmä pyytää kontekstipalvelinta luomaan uuden kontekstin kutsumalla CreateSession-metodia. Kontekstipalvelin luo uuden kontekstin ja palauttaa kontekstisessiota yksilöivän sessioavaimen perusjärjestelmälle.

Perusjärjestelmä liittyy kontekstipalvelimeen JoinCommonContext-metodilla ja antaa yhtenä parametrina saamansa sessioavaimen.

Käyttäjä kirjautuu sisään perusjärjestelmään. Perusjärjestelmä merkitsee kontekstissa User.Id.Logon-tiedon arvoksi käyttäjän yksilöivän tunnisteen SetItemValues-metodilla. Kontekstipalvelin tarkistaa, että sovelluksella on oikeus käyttäjän asettamiseen.

Käyttäjä valitsee perusjärjestelmässä käsiteltävän potilaan, jolloin kontekstiin kirjataan Patient.Id.NationalIdNumber-tiedon arvoksi kyseisen potilaan henkilötunnus SetItemValues-metodia käyttäen.

Kuva 10. Kontekstin luominen, liittyminen kontekstiin
ja kontekstin asettaminen (Rissanen 2005).

[bookmark: _Toc122836255]Selainkäyttöisen aluejärjestelmän käynnistäminen ja liittyminen kontekstiin

Kuvassa 11 on kuvattu selainkäyttöisen aluejärjestelmän käynnistäminen ja liittyminen kontekstiin sekä kontekstin hyödyntäminen.

Käyttäjä ilmoittaa perusjärjestelmälle haluavansa käynnistää selainkäyttöisen aluejärjestelmän valiten samalla toiminnon, johon haluaa alueellisessa järjestelmässä siirtyä. Toteutuskohtaisesti on päätettävissä miten ja mistä aluejärjestelmä perusjärjestelmän sisällä käynnistetään ja miten käyttäjä valitsee haluamansa aluejärjestelmän toiminnon.

Perusjärjestelmä käynnistää selaimen ja kutsuu sen kautta aluejärjestelmää. Aluejärjestelmälle välitetään kutsun parametreina sessioavain, kutsuvan sovelluksen tunniste, aluejärjestelmän oma tunniste sekä sen toiminnon koodi, johon käyttäjä ilmoitti haluavansa siirtyä.

Aluejärjestelmä tarkistaa käynnistyessään parametrinsa. Kutsuttavan sovelluksen tunnuksen on oltava aluejärjestelmän oma tunnus. Kutsuvan sovelluksen tunnuksen on oltava tunnettujen sovellusten luettelossa. Toimintokoodin on oltava tuettujen toimintojen listalla.

Kutsuvan sovelluksen tunnisteesta aluejärjestelmä päättelee kontekstipalvelimen, johon sen on liityttävä. Aluejärjestelmä liittyy kutsuparametrina saamansa sessioavaimen yksilöimään kontekstiin JoinCommonContext-metodilla.

Kuva 11. Selainkäyttöisen aluejärjestelmän käynnistäminen
ja liittyminen kontekstiin sekä kontekstin hyödyntäminen (Rissanen 2005).

[bookmark: _Toc122836256]Aluejärjestelmä kontekstin hyödyntäjänä

Edellisen kappaleen kuvassa 11 on kuvattu myös aluejärjestelmän kontekstin hyödyntäminen.

Aluejärjestelmä kysyy kontekstipalvelimelta kontekstitiedot (User.Id.Logon- ja Patient.Id.NationalIdNumber-tiedot) GetItemValues-metodilla. Alueellinen järjestelmä siirtyy parametrina annettuun toimintoon (action) kontekstissa olevien tietojen mukaisesti, eli suorittaa kertakirjauksen ja siirtyy kontekstista saamansa Patient.Id.NationalNumber-tiedon mukaiseen potilaaseen. Patient.Id.NationalIdNumber-tietoa ei tarvita, jos toiminto ei ole potilaskohtainen.

Mikäli löytynyttä käyttäjätunnusta ei tunneta, selain ohjataan käyttäjän tunnistustoimintoon. Tunnistamisen jälkeen aluejärjestelmä voi tallentaa linkityksen perusjärjestelmän käyttäjätunnuksen ja aluejärjestelmän käyttäjän välille, jolloin käyttäjän ei enää jatkossa tarvitse tunnistautua erikseen aluejärjestelmään, kun aluejärjestelmä käynnistetään perusjärjestelmästä käsin. Vaihtoehtoinen tapa on määritellä käyttäjätunnusten linkitykset aluejärjestelmässä etukäteen, mutta tällöin pääkäyttäjien on tiedettävä mitä tunnisteita perusjärjestelmät käyttäjistä käyttävät kontekstissa. Alueellisesta yksilöllisyysvaatimuksesta johtuen tunniste ei todennäköisesti ole sama minkä käyttäjät näkevät. Mikäli käyttäjätunnusten linkitys tapahtuu automaattisesti normaalin käyttäjän tunnistuksen jälkeen, on huomattava, että linkitys pitää myöhemmin pystyä perumaan. Jos käyttäjällä on tiedossaan useita aluejärjestelmän käyttäjätunnuksia, voi hän vahingossa kirjautua sisään aluejärjestelmään väärällä tunnuksella ja aiheuttaa perusjärjestelmän käyttäjätunnuksen linkittymisen väärään aluetason käyttäjään.

[bookmark: _Toc122836257]Järjestelmien rinnakkainen käyttö

Käyttäjä voi milloin tahansa aktivoida uudelleen perusjärjestelmän, vaihtaa potilasta ja pyytää aluejärjestelmän käynnistystä tiettyyn toimintoon. Perusjärjestelmä voi käyttää uuteen aluejärjestelmän selainkutsuun samaa selainikkunaa kuin aikaisemmin, jolloin kutsu tapahtuu aluejärjestelmän kannalta samassa istunnossa. Tällöin kutsuttu aluejärjestelmän toiminto latautuu samaan selainikkunaan. Vaihtoehtoisesti perusjärjestelmä voi jokaisella kutsulla käyttää uutta selainikkunaa. Tällöin näytölle voi kertyä useita aluejärjestelmän ikkunoita, mikä ei todennäköisesti ole toivottavaa. Vaikka pyrittäisiinkin käyttämään aina samaa selainikkunaa, perusjärjestelmän on varauduttava siihen, että käyttäjä välillä sulkee selainikkunan, jolloin on tarvittaessa pystyttävä luomaan uusi ikkuna. Tekniikka, jolla perusjärjestelmä selainta ohjaa, jää toteutuskohtaisesti ratkaistavaksi.

Aluejärjestelmän on varauduttava siihen, että sitä kutsutaan uudelleen perusjärjestelmästä käsin samassa istunnossa. Tällöin aluejärjestelmä tarkistaa, että sovellustunnisteet ovat samat kuin ensimmäisellä kutsukerralla. Samoin aluejärjestelmä tarkistaa, että käyttäjätunnus kontekstissa ei ole vaihtunut. Jos kutsuttu toiminto on potilaskohtainen, luetaan potilaan henkilötunnus kontekstista ennen uuteen toimintoon siirtymistä. Toisaalta aluejärjestelmä ei voi olla varma siitä, ettei samaa sessioavainta olisi käytetty jossain aikaisemmassa istunnossa, jos käyttäjä erehtyy sulkemaan selainikkunan tai perusjärjestelmä muuten luo jokaisella kutsulla uuden selainyhteyden. Jos konteksti-palvelimeen on määritelty aluejärjestelmälle vain yksi sovellusnimi, ei se voi uudelleen liittyä samaan kontekstiin. Aluejärjestelmän on siten muistettava sessio-avaimeen liittyvä kontekstinhallinnan kuponki käytetystä istunnosta riippumatta. Yksi vaihtoehto tämän ongelman kiertämiseen on se, että aluejärjestelmä kytkeytyy jokaisen toiminnon yhteydessä kontekstiin JoinCommonContext-metodilla ja poistuu toiminnon lopuksi kontekstista LeaveCommonContext-metodilla. Aluejärjestelmän tulee sitä kutsuttaessa tarkistaa, että konteksti on vielä olemassa ja että käyttäjä on edelleen asetettuna kontekstiin. Tällaiseen virhetilanteeseen voidaan ajautua mm. perusjärjestelmän kaatuessa. Jos käyttäjää ei saada tarkistettua, aluejärjestelmästä kirjaudutaan automaattisesti ulos. Kutsut, joiden yhteydessä tarkistus tehdään, voivat olla toisesta sovelluksesta tulevia, mutta myös aluejärjestelmän sisäisiä linkkejä. Toteutuskohtaisesti on päätettävä tilanteet, joissa tarkistus on tarpeen tehdä.

[bookmark: _Toc122836258]Järjestelmien sulkeminen

Kuvassa 12 on kuvattu järjestelmien sulkeminen ja eroaminen kontekstista.

Jos perusjärjestelmää suljettaessa todetaan aluejärjestelmän selainikkunan olevan vielä auki, kutsuu perusjärjestelmä selaimen välityksellä aluejärjestelmää antaen parametrina toimintokoodin, joka kehottaa sulkemaan sovelluksen. Aluejärjestelmä kutsuu kontekstipalvelimen LeaveCommonContext-metodia. Tämän jälkeen myös perusjärjestelmä kutsuu kontekstipalvelimen LeaveCommonContext-metodia.

Jos aluejärjestelmä suljetaan sen oman toimintovalikon kautta, se kutsuu itse ContextManagerin LeaveCommonContext-metodia. Tällöin perusjärjestelmä ja sen luoma konteksti voi vielä jäädä käyttöön. Aluejärjestelmää voidaan myöhemmin pyytää uudelleen liittymään samaan kontekstiin.

Kuva 12. Järjestelmien sulkeminen ja eroaminen kontekstista (Rissanen 2005).

[bookmark: _Toc122836259]Sessioavaimen välittäminen
Organisaation sisäinen järjestelmä välittää sessioavaimen organisaation ulkopuoliselle järjestelmälle kutsumalla ulkopuolista järjestelmää selaimen kautta käyttäen https-protokollan post-metodia. Parametrien content-type on application/x-www-form-urlencoded. Https-protokollaa käytettäessä kutsu on salattu. Post-metodin käyttö estää parametrien näkymisen selaimen osoiterivillä. Taulukossa 6 kuvataan käytetyt kutsuparametrit.
Taulukko 6. Sessioavaimen välittämiskutsun parametrit.
	Parametrin nimi
	Selitys

	sender
	Lähettävän järjestelmän tunnistetieto.
Tunnisteen avulla organisaation ulkopuolinen järjestelmä saa selville, mistä organisaatiosta kutsu tulee ja osaa näin päätellä, mihin kontekstipalvelimeen sen tulisi liittyä.

	receiver
	Vastaanottavan järjestelmän oma tunniste.
Tunnisteen avulla organisaation ulkopuolinen järjestelmä voi varmistaa, että lähetty tunnus on sen oma tunnus. Tunnisteen avulla voidaan suorittaa esim. lisätarkistuksia.

	sessionKey
	Kontekstin yksilöivä sessioavain.
Organisaation sisäinen sovellus lähettää selaimen välityksellä organisaation ulkopuoliselle järjestelmälle sessioavaimen, jolla organisaation ulkopuolinen sovellus voi liittyä samaan työasemakohtaiseen kontekstisessioon, kuin missä lähettävä järjestelmä jo on.

	action
	Organisaation ulkopuolisen järjestelmän toiminnon koodi, johon halutaan siirtyä.
Toimintokoodi kertoo organisaation ulkopuoliselle järjestelmälle, mihin toimintoon sen toivotaan menevä.. Toiminto voi olla yksinkertainen avaamis- tai sulkemispyyntö tai pidemmälle vietynä esim. kuvien selaus-toiminto. Toimintokoodit eri tarkoituksiin ovat kahdenvälisesti sovittavia ja tarvittaessa ne voivat olla kuvattuna erillisessä dokumentissa, joka kuvaa toimintokoodin käyttöä eri tilanteisiin Toimintokoodin muodolle ei aseteta rajoituksia, se voi olla joko numeerinen arvo, merkkijono, tms.

Kutsuttava osoite on muotoa:
https://osoite:portti/polku

Parametrit välitetään muodossa:
content-type: application/x-www-form-urlencoded

sender=1.2.246.537.10.2035338.18.2005.5&receiver=1.2.246.537.10.15675350.18.1.119&sessionKey=asr434vber453gre4m0343o3234&action=1

Välitettävien parametrien määrä on rajattu mahdollisimman pieneksi, sillä parametrien välittämisessä on huomioitava, että parametreissa on mahdollisimman vähän tietoturvan kannalta oleellista tietoa.
Lähteet

	Health Level Seven. HL7 Messaging Standard Version 2.5, An Application Protocol for Electronic Data Exchange in Healthcare Environments. Health Level Seven, Ann Arbor, USA. 2003.

	Komulainen A, Tuomainen M. CCOW -standardi ja sen toteutus Sentillion Vergence Application SDK:lla. Savonia-ammattikorkeakoulu, Savonia Business. Tradenomin opinnäytetyö. 2002.

	Rissanen T. Alueellinen kontekstinhallinta. Common Services SIG:issä 12.12.2005 pidetty esitys. 2005.

	Seliger B, Royer B. HL7 Context Management “CCOW” Draft Standard: Technology- and Subject-Independent Component Architecture, Version 1.4. Health Level Seven. 2002.

	Seliger B. HL7 Context Management “CCOW” Draft Standard: Component Technology Mapping: Web/HTTP, Version 1.4. Health Level Seven. 2002a.

	Seliger B. HL7 Context Management “CCOW” Draft Standard: Subject Data Definitions, Version 1.4. Health Level Seven. 2002b.

LIITE 1. Minimitoteutuksen erot CCOW-standardiin

Kontekstimuutosten toteuttamiseksi minimitoteutuksessa context managerin tarvitsee toteuttaa vain kontekstinhallintaan liittymisessä ja siitä eroamisessa, sekä kontekstin tietosisällön käsittelyssä tarvittavat metodit. Tiedon käsittely tapahtuu yksinkertaisilla get/set –metodeilla. Context manager ei kutsu osallistuvia sovelluksia (ei CCOW-standardin ilmoituksia kontekstin muutoksista tai kartoituksen tuloksista), vaan konteksti haetaan ainoastaan käyttäjän niin halutessa esim. päivityspainiketta klikkaamalla. Tällainen ratkaisu yksinkertaistaa context managerin toteutusta huomattavasti.

Minimitoteutuksen erot CCOW-standardiin:
· Osallistuvien sovellusten ei tarvitse toteuttaa uusia rajapintoja (CCOW-standardin ContextParticipant), koska context manager ei koskaan kutsu sovelluksia.
· Context manager toteuttaa ContextManager-rajapinnassaan CreateSession-metodin, jolla voidaan sovellus voi pyytää koordinaattoria luomaan sessioavaimen. Tätä metodia ei ole CCOW-standardissa.
· Context managerin tarvitsee toteuttaa vain kontekstinhallintaan liittymisessä tarvittavat join / leave ja kontekstin tietosisällön käsittelyssä tarvittavat get/set tyyppiset metodit rajapinnassaan.
· Kartoitusvaihetta (survey phase) ei tarvitse suorittaa, mikä yksinkertaistaa komponentin toteutusta huomattavasti.
· Sovellukset eivät päivitä tilaansa automaattisesti, vaan ainoastaan käyttäjän niin halutessa. Tämä voi olla jopa toivottu ominaisuus verrattuna CCOW-standardin automaattiseen päivitykseen.
· Toteutettavaksi jää minimaalinen määrä rajapintoja. Periaatteessa riittävät seuraavat CCOW-standardin rajapinnat (ja nämäkin karsittuina versioina):
· ContextManager-rajapinta: kontekstinhallintaan liittyminen ja siitä eroaminen
· ContextData-rajapinta: kontekstin tiedon käsittely.
· Lisäksi ContextManager-rajapinnan kontekstisession luominen, jota ei ole CCOW-standardissa.
· Palvelinpohjaiseen määritykseen lisätty metodi JoinCommonWithIp, jota ei löydy CCOW-standardista (tätä metodia ei tosin enää suositella käytettäväksi).
· Turvallisuutta ei ole ratkaistu samalla tavoin kuin CCOW-standardissa.

Tilanteessa, jossa minimitason määritysten mukaisesti toteutettu asiakassovellus haluaisi käyttää CCOW-standardin mukaista koordinaattoria, ovat ongelmina:
· Sovelluksesta puuttuu ContextParticipant-rajapinta. Näin koordinaattori ei voi ilmoittaa sovellukselle kontekstin muutoksista, eikä kartoittaa haluaako sovellus vaihtaa kontekstia vai ei.
· Sovellus ei voi hakea kontekstia, koska se ei ole em. kohdassa kuvatusta syystä ilmoittanut koordinaattorille olevansa halukas vaihtamaan kontekstia. Sovelluksella ei ole myöskään antaa koordinaattorin vaatimaa contextCoupon-tunnistetta, sillä tämä tunniste puuttuu kokonaan minimitason kontekstinhallintaratkaisun metodeista.
· Sovellus ei voi asettaa kontekstia, sillä CCOW-standardissa kontekstin saa asettaa vasta, kun on saanut koordinaattorilta uuden contextCoupon-tunnisteen ehdotettavalle uudelle kontekstille. Asettaminen vaatii myös kahden minimitason määrityksistä karsitun metodin käyttöä.

LIITE 1 JATKUU
LIITE 1 JATKUU

Vastaavasti tilanteessa, jossa CCOW-yhteensopiva asiakassovellus haluaisi käyttää minimitason määritysten mukaista koordinaattoria, ovat ongelmina:
· CCOW-yhteensopiva sovellus olettaa kartoitusvaihetta. CCOW-standardin mukainen sovellus ei hae kontekstista tietoja ennen kuin koordinaattori on ilmoittanut kontekstin vaihtuneen. Minimitason kontekstinhallintaratkaisussa koordinaattoriin ei ole toteutettu sovelluksen ContextParticipant-rajapinnan kutsumista ja se ei näin ilmoita kontekstin muutoksista.
· CCOW-standardin mukainen sovellus ei myöskään voi asettaa kontekstia. Ennen kuin se voi asettaa kontekstin, on sen kutsuttava minimitason määrityksistä puuttuvaa metodia ja lopetettava kontekstin asetus metodiin, jota ei ole toteutettu minimitason määritysten mukaiseen koordinaattoriin.

LIITE 2. Lista jatkokehitysehdotuksista.

Seuraavassa on lueteltu lista jatkokehitysehdotuksista, joita seuraaviin minimikontekstinhallinnan versioihin otetaan tarvittaessa mukaan. Lista ei ole järjestetty tärkeysjärjestyksen mukaan.

· Käyttäjän siirtyessä työasemalta toiselle pitäisi käyttäjän pystyä jatkamaa edellisen työaseman sessiota toisella työasemalla.
· Määrittelyssä olisi huomioitava myös yhteiskäyttöisten työasemien käyttöä.
· Pohdittava, miten kontekstinhallintaa voi hyödyntää keskitetyn käyttäjähallinnan tietojen jakamiseen.
· Mitä yhteisiä lisätietoja kontekstiin tarvitaan?
· esim, käyttäjän nimi User.Co.Name mukaan, muita käyttäjään liittyviä tietoja
· potilaasta lisätietoja, näiden tietojen perusteella voisi tarvittaessa lisätä potilaan järjestelmään
· Yhteisesti käytettävien subjektien vieminen subjektikoodistoon, koodisto on tällä hetkellä tyhjä. Kun subjektit ovat koodistossa, määriteltäessä uusia subjekteja ei tarvitse aina tehdä uutta minimikontekstinhallinnan versioita.
· Sessioavaimen välittäminen työasemasovelluksille, web-sovelluksille on kuvattu tapa alueellisen kontekstinhallinnan yhteydessä.
· Parametrina välitettävien action-koodien määrittely sovelluksen avauksen yhteydessä. Voitaisiin määritellä ainakin yleisesti käytettävät.
· Web/http-teknisen määrittelyn rinnalle myös web services-määritys.

HL7 Finland	
image4.wmf
Sovellus

Koordinaattori

JoinCommonContext(applicationName, sessionKey)

participantCoupon

GetItemValues(participantCoupon, User.Id.Logon)

itemValues=mituomai

image5.wmf
LeaveCommonContext(participantCoupon)

Sovellus

Koordinaattori

image6.wmf
Organisaation

sisäinen kontekstipalvelin

Kontekstipalvelu

Web-palvelin

Web-selain

(web-sovellus)

Organisaation

sisäinen järjestelmä

Organisaation

ulkopuolinen järjestelmä

1b

1a

2

image7.wmf
Org. ulkop.

järjestelmä

Alueellinen

kontekstipalvelu

Org. sis.

järjestelmä

Alueellinen

kontekstipalvelin

image8.wmf
Organisaation

sisäinen kontekstipalvelin

Kontekstipalvelu

Web-selain

(web-sovellus)

Työasemasovellus

SSL

SSL

Organisaation

ulkopuolinen järjestelmä

SSL

Web-palvelin

image9.wmf
Työpöytä

Web-palvelin

Kontekstipalvelu

Web-selain

(web-sovellus)

2

1

Työasemasovellus

Server

Adapteri

Välitys-

ohjelma

image10.wmf
Sovellus

http

-

yhteyskomponetti

Web-

sovellus

http-

yhteyskomponetti

WWW-

palvelin

Kontekstinhallinta

-

palvelutoteutus

http-

keskustelija

http

http

http

image11.wmf
Käyttäjä

Perusjärjestelmä

Kontekstipalvelin

Käynnistää

CreateSession(applicationName=perusjärjestelmä

)

sessionKey=xyz

JoinCommonContext(applicationName=perusjärjestelmä

,

sessionKey=xyz

)

participantCoupon=123

Kirjautuu sisään

SetItemValues(participantCoupon=123,

itemNames=User.Id.Logon

,

itemValues=käyttäjätunnus@perusjärjestelmä

)

Valitsee potilaan

SetItemValues(participantCoupon=123,

itemNames=Patient.Id.NationalIdNumber

,

itemValues=070707

-

0707)

image12.wmf
Käyttäjä

Perusjärjestelmä

Aluejärjestelmä

Kontekstipalvelin

Käynnistä alue

-

järjestelmän toiminto 1

Selain

https://

osoite:portti

/polku

content

-

type: application/x

-

www

-

form

-

urlencoded

sender=

perusjärjestelmä

&

receiver=

aluejärjestelmä

&

sessionKey

=

xyz&action

=1

JoinCommonContext

(

applicationName=aluejärjestelmä

,

SessionKey=xyz

)

participantCoupon=456

GetItemValues

(

participantCoupon=456,

itemNames=User.Id.Logon

|

Patient.Id.NationalIdNumber

)

itemValues=User.Id.Logon

|

käyttäjätunnus@perusjärjestelmä

|

Patient.Id.NationalIdNumber

|

070707

-

0707

Toiminnon 1 aloitussivu

image13.wmf
Käyttäjä

Perusjärjestelmä

Aluejärjestelmä

Kontekstipalvelin

Sulje järjestelmä

Selain

https://

osoite:portti

/polku

content

-

type: application/x

-

www

-

form

-

urlencoded

sender=

perusjärjestelmä

&

receiver=

aluejärjestelmä

&

sessionKey

=

xyz&action

=99

LeaveCommonContext

(

participantCoupon=456)

Ilmoitus järjestelmän sulkemisesta

LeaveCommonContext(participantCoupon=123)

image1.jpeg

image2.wmf
Koordinaattori

Yhteinen

konteksti

Rajapinnat

 CM = ContextMa nager

 CD = ContextData

Sovellus 1

(web/työasema)

Sovellus 1

(web/työasema)

CM

CD

image3.wmf
Sovellus

Koordinaattori

CreateSession()

sessionKey

JoinCommonContext(applicationName, sessionKey)

participantCoupon

SetItemValues(participantCoupon, User.Id.Logon, mituomai)

