

50
Minimikontekstinhallinnan määrittely – organisaation sisäiseen kontekstinhallintaan

Minimikontekstinhallinnan määrittely
· organisaation sisäiseen kontekstinhallintaan
Versio 2.1

	
	HL7 Finland ry

	
	OID: 1.2.246.777.11.2004.12

	HL7 teknisen komitean hyväksymä: 11.10.2004
HL7 hallituksen hyväksymä: 13.10.2004

	versio 2.1

Sisällys
1	Minimikontekstinhallinnan määrittely	5
2	Konteksti	6
3	Subjektit	7
3.1	Subjektien nimeäminen	7
3.2	Subjektien käyttäminen	7
3.3	Minimitoteutuksen subjektit	8
3.3.1	Käyttäjä-subjekti	8
3.3.2	Potilas-subjekti	9
3.3.3	Custom Subjects	9
3.3.4	Subjektit ja turvallisuus	10
4	Kontekstinhallintaa liittyminen, kontekstimuutosten toteuttaminen ja kontekstinhallinnasta eroaminen	11
4.1	Kontekstinhallintaan liittyminen	11
4.2	Potilaskontekstin muutos	11
4.3	Käyttäjäkontekstin muutos	11
4.3.1	Käyttäjäkonteksti & turvallisuus	11
4.3.2	Käyttäjäkontekstinmuutokset	12
4.4	Kontekstinhallinnasta eroaminen	13
5	Sessionhallinta, elinkaari ja identifioiminen	14
6	Minimitoteutuksessa tarvittavat rajapinnat	15
6.1	Rajapintojen, metodien, parametrien ja subjektien nimeäminen	15
6.1.1	Rajapinnat	15
6.1.2	Metodit	15
6.1.3	Parametrit	15
6.1.4	Poikkeukset	15
6.1.5	Subjektit	15
6.2	CM (ContextManager-rajapinta, kontekstinhallintaan liittyminen ja siitä eroaminen)	16
6.2.1	JoinCommonContext	16
6.2.2	LeaveCommonContext	17
6.3	CD (ContextData-rajapinta, kontekstitiedon käsittely)	18
6.3.1	SetItemValues	18
6.3.2	GetItemValues	19
6.4	Rajapintojen käyttöesimerkki	21
7	Palvelinpohjainen kontekstinhallinta	23
7.1	Arkkitehtuuri	23
7.2	Tekniikka	24
7.3	Sessionhallinta	25
7.4	Pollaukset	26
7.5	Metodit http-viesteillä	27
7.5.1	HTTP GET / POST-viestit	27
7.5.2	MIME-header	27
7.5.3	Http-kutsun muodostaminen	27
7.5.4	Paluuarvon muodostaminen	28
7.5.5	Poikkeukset	28
7.6	CM (ContextManager-rajapinta)	29
7.6.1	JoinCommonContext	29
7.6.2	JoinCommonContextWithIp	29
7.6.3	LeaveCommonContext	30
7.7	CD (ContextData-rajapinta)	31
7.7.1	SetItemValues	31
7.7.2	GetItemValues	31
8	Turvallisuus	33

LIITTEET

Liite 1. Turvallisuus CCOW-tavalla.

Liite 2. Jatkokehitys.

Liite 3. Minimitoteutuksen erot CCOW-standardiin.
Versiohistoria
	Versio:
	Pvm:
	Laatijat:
	Selitys:

	Pohjadokumentti
	20.4.2004
	
	PlugIT-johtoryhmän hyväksymä Minimitason kontekstinhallinnan määrittely – versio 2.

	Ehdotus HL7 Finland tekniselle komitealle
	10.9.2004
	Mika Tuomainen
	Määrittelyyn lisätty ja korjattu lausuntokierrokselta tulleet kommentit:
· Päivitetty viitteet CCOW-standardiin ja PlugIT-dokumentteihin läpi koko määrittelyn.
· Kappaleeseen 3.1 Subjektin nimeäminen huomioitu mahdollinen laajentamisen tarve.
· Kappaleeseen 3.2 huomioitu subjektin tietojen välinen sekä subjektien välinen riippuvuus.
· Kappale 3.3.1 käyttäjä-subjektin lisätietojen määrittely huomioitu.
· Kappale 3.3.2 potilas-subjektin lisätietojen määrittely huomioitu.
· Kappale 6.3.1 itemNames-parametriin tarkennettu Id-tiedon asetus.
· Kappale 6.3.1 SetItemValues-metodin virheiden tarkennukset.
· Kappale 6.3.2 itemNames-parametriin tarkennettu Id-tiedon hakemisen pakollisuus.
· Kappale 6.3.2 itemValues-parametriin tarkennettu tyhjän arvon palauttaminen virheen sijasta.
· Kappale 6.3.2 UnknownItemName-poikkeuksen merkitys muuttunut.
· Kappale 7.5.1 myös POST-viestit mukaan määritykseen, viite liitteeseen poistettu.
· Kappale 7.5.2 content-type:ksi lisätty application/x-www-form-urlencoded ja lisätty kuvaus parametrien arvojen koodauksesta.
· Kappale 7.5.4 Paluuarvojen muodostamiseen lisätty content-type application/x-www-form-urlencoded.
· Luku 8 Turvallisuus lisätty kohta käyttäjän tunnustiedon käyttämisen pakollisuudesta käyttäjän tietoja asetettaessa.
· Liite 1 Turvallisuusratkaisussa kuvattu vain CCOW-standardin mukainen tapa.
· Liite 2 Jatkokehitys kohdasta poistettu http-viestit, jotka lisätty itse tekstiin.
· Liite 3 Minimitoteutuksen ja CCOW-standardin eroista päivitetty.

	Korjattu/tarkennettu ehdotus
	13.9.2004
	Mika Tuomainen
	Korjattu/tarkennettu 10.9.2004 jälkeen tulleet kommentit
· custom-subjekti esimerkki korjattu.
· Kappale 6.3.1 SetItemValues-metodin itemName-parametri tarkennettu.
· Kappale 6.3.2 GetItemValues-metodin itemValues-parametri tarkennettu.
· Kappale 7.5.2 MIME-header, jossa tarkennettu sovelluksen toimintaa riippuen mitä content-type:a sovellus käyttää.
· virheellinen application/x-www-urlencoded korjattu läpi dokumentin application/x-www-form-urlencoded.
· lisätty kappale 7.6.3 JoinCommonContext?, jossa etsitään ratkaisua NAT-osoitteiden aiheuttamaan onglemaan.

	HL7 Finland teknisen komitean käsittely
	16.9.2004
	HL7 TC
(Jari Porrasmaa)
	· lausuntokierrosten kommenttien käsittely ja jako määrityksen tarkennuksiin ja jatkokehitysehdotuksiin

	Teknisen komitean kommenttien perusteella korjattu/tarkennetu versio
	5.10.2004
	Mika Tuomainen
	Muutokset HL7 Finland teknisen komitean käsittelyn 16.9.2004 jälkeen
· dokumentin nimi: Minimikontekstinhallinnan määrittely – organisaation sisäiseen kontekstinhallintaan
· organisaation sisäiseen kontekstinhallintaan –tarkennus lisätty myös tekstiin lukuun 1, kappaleeseen 3.3.4, kappaleeseen 4.3.1
· siirretty kappale 7.6.3 JoinCommonContext? liitteen 2 Jatkokehitys kappaleeseen 1.2.3
· myös alueellisen tason ratkaisun vaatimukset kontekstinhallinnalle lisätty liitteen 2 Jatkokehitys kappaleeksi 1.3.
· lisätty kappaleeseen 3.3 kohdat, joissa todetaan että osa subjekteista voi olla kansallisesti sovittuja ja niitä voi tuoda HL7 TC:n kautta subjektikoodistoon, joka on saatavilla kansalliselta
· Geneerinen tarkennettu kappaleessa 3.1, poistettu maininta toimikortista.

	HL7 Finland
teknisen komitean
käsittely
	11.10.2004
	HL7 TC
(Jari Porrasmaa)
	· Dokumentin ja subjektikoodiston OID tarkennettu
· Esitys HL7 hallitukselle hyväksyttävästä määrittelystä

	HL7 hallituksen käsittely
	13.10.2004
	HL7 TC
(Timo Tarhonen)
	· Esitelty tähän määritykseen liittyvä teknisen komitean lausuntoprosessi HL7-hallitukselle.
· Hallitus hyväksyi tämän määrityksen viralliseksi HL7 Finland määritykseksi.

[bookmark: _Toc84752467]
Minimikontekstinhallinnan määrittely

Minimikontekstinhallinnan määrittely on tarkoitettu organisaation sisäisen (sisäisessä verkossa toimivan) kontekstinhallinnan toteuttamiseen. Alueelliseen käyttöön sovellettavan kontekstinhallintaratkaisun on täytettävä useita vaatimuksia, joita on lueteltu liitteen 2 kappaleessa 1.3.

Minimikontekstinhallinta muodostuu context manager-komponentista ja siihen liittyneistä sovelluksista. Context manager toimii työpöydällä olevien järjestelmien näkymättömänä koordinaattorina, jonka avulla siihen liittyneet sovellukset voivat jakaa keskenään yhteisen kontekstin. Kontekstinhallintaan liittyneet sovellukset ovat olemassa olevia sovelluksia (web/työasema). Minimikontekstinhallinnan määrittely määrittelee context managerin ja sovellusten väliset rajapinnat, rajapintojen käytön, sekä yhteisen kontekstin nimeämisen ja sisällön (kuva 1).

Kuva 1. Kontekstinhallinta.

Tämän dokumentin pohjana on käytetty CCOW-standardissa (Seliger, Royer 2002) määriteltyä ratkaisua työpöytäintegraation toteuttamiseen. Tarkoitus ei kuitenkaan ole toistaa standardissa jo määriteltyjä vaatimuksia, vaan hahmottaa minimiratkaisua, jolla CCOW-tyyppinen toiminnallisuus on saavutettavissa. Standardista on pyritty löytämään vain kaikkein olennaisimmat ja hyödyllisimmät osat, joilla työpöytäintegraation perustoiminnallisuus, käyttäjä- ja potilaskontekstin käsittely, voidaan toteuttaa. Dokumentissa esitellään sekä minimitason ratkaisu tekniikkariippumattona että tekniselle web-tekniikalle. CCOW-standardin ja minimikontekstinhallinta määrittelyn keskeisimmät erot on kuvattu liitteessä 3.

[bookmark: _Toc84752468] Konteksti

Kontekstinhallinnan (context managerin) tärkein tehtävä on säilyttää ja ylläpitää työpöytäkohtaista kontekstia, eli tietoja viimeksi valitusta potilaasta, sisään kirjautuneesta käyttäjästä ja muista mahdollisista tiedoista, joita työpöytäintegraatiossa halutaan hyödyntää.

Kontekstinhallinnan minimitoteutuksen tärkeimmät tiedot liittyvät käyttäjään ja potilaaseen. Näiden tietojen avulla saadaan toteutettua toiminnallisuus, jossa integraatioon osallistuvat sovellukset voivat toteuttaa kertakirjautumisen (käyttäjä) ja seurata saman potilaan tietoja koordinoidusti eri ohjelmissa (potilas). Yksinkertaistettuna tämä tarkoittaa potilaan ja käyttäjän tunnuksien hakemista kontekstista sekä niiden välittämistä kontekstiin.

Kontekstin tietosisältö on määritelty CCOW-standardin dokumentin ”Subject Data Defini-tions” (Seliger 2002b) mukaisesti tietokokonaisuuksittain, joita kutsutaan subjekteiksi (context data subject). Jokaiseen subjektiin liittyy joukko tietoja, joista jokainen muodostaa nimi-arvoparin (context item). Esimerkiksi käyttäjäsubjektista voisi löytyä seuraava tieto, joka vastaa käyttäjätunnusta:

 (
”User.ID.Logon”
(nimiosa)
”MattiM”
(arvo)
sdf
)

[bookmark: _Toc84752469]Subjektit

Tässä luvussa käydään läpi, kuinka subjektit nimetään minimitoteutuksessa sekä mitä subjektien käytössä tulee ottaa huomioon. Lisäksi esitellään User-, Patient- ja custom-subjektit.

[bookmark: _Toc84752470]Subjektien nimeäminen

Minimitason kontekstinhallinnan subjektien nimeäminen ja syntaksi määritellään CCOW-standardin dokumentin ”Subject Data Definitions” (Seliger 2002b) mukaisesti. Syntaksi on yhteinen kaikille subjektille. Kaikki subjektit nimetään seuraavan säännön mukaisesti:

 (
Subject_label
.
role
.
Name_prefix
.optional_name_suffix
)

Jokainen osa erotetaan toisistaan pisteellä ja jokaisella osalla on oma tarkoituksensa:

· Subject_label: Ilmaisee subjektin, johon tieto kuuluu, esim. Patient.
role: Kertoo tiedon ”roolin”. Minimitason kontekstinhallintaratkaisussa on määritelty rooliksi ainoastaan:
Id = identifier data. Tieto, jota käytetään jonkin todellisen entiteetin tunnistamiseen, esim. yksilöllinen potilastunnus.
Co = corroborating data. Id-tyypin tietoa vahvistava tieto, joka on riippuvainen id-tyypin tiedosta. Esimerkiksi potilaan etunimi, joka ei ole yksilöivä tieto, mutta joka kuitenkin käytännössä helpottaa hänen tunnistamistaan.
An = annotating data. Lisätietoa, joka on riippuvainen jostakin id-tyypin tiedosta.
CCOW-standardissa on määritelty myös muita tiedon ”rooleja” (Seliger 2002b, Tuomainen 2003b).
· Name_prefix. Ilmaisee mitä tieto tarkoittaa, esimerkiksi Logon (= kirjautumistieto).
Optional_name_suffix. Tämä ei ole pakollinen kenttä. Suffix-osan avulla on mahdollista esimerkiksi erottaa eri järjestelmien käyttämät subjektit, jos niiden arvot poikkeavat toisistaan. Suffix-osaan voidaan tätä tarkoitusta varten esimerkiksi sovelluksen nimi. CCOW-standardissa tätä käytetään mm. erottamaan saman käyttäjän eri käyttäjätunnukset eri sovelluksissa (Seliger 2002b, Tuomainen 2003b).

[bookmark: _Toc84752471]Subjektien käyttäminen

Seuraavassa käydään läpi subjektien käyttämistä:
· Subjektin tietojen riippuvuus: Yhden subjektin tiedot ovat riippuvaisia subjektin Id-tunnisteesta. Riippuvuussuhteen seurauksena asiakassovelluksen vaihdettua subjektia kontekstiin on kontekstipalvelimen poistettava edelliseen subjektiin liittyvät tiedot. Esimerkiksi potilaan henkilötunnuksen (potilaan id-tieto) vaihtuessa kontekstissa pitää kontekstista poistaa kaikki edelliseen potilaaseen liittyneet tiedot.
· Subjektien riippuvaisuus toisistaan: Koordinaattorille voidaan määritellä myös subjektien välisiä riippuvuuksia. Tällöin vaihdettaessa subjektia, myös edellisestä subjektista riippuvaiset subjektit tietoineen on poistettava. Esimerkiksi hoitojakso-subjekti voi olla riippuvainen potilas-subjektista. Näin poistettaessa potilas-subjektia kontekstista, on poistettava myös potilaaseen liittyvä hoitojakso-subjekti tietoineen.
· Vähintään yksi id-tieto kontekstissa: Kontekstin tietosisällölle ei ole muita rajoittavia tekijöitä kuin yhden id-tiedon pakollisuus. Ilman subjektin id-tietoa kontekstiin ei saa asetta muita subjektin tietoja. Kontekstin tietosisältönä on oltava siis aina vähintään yksi subjektin id-tieto.
· Sama tieto useaan kertaan: CCOW-standardissa joillakin subjekteilla voi olla yhtä subjektin nimeä kohden useita eri arvoja. Esim. puhelinnumerolla voisi olla yhdellä nimellä useita arvoja. Tällaisessa tilanteessa nimi pitää numeroida juoksevasti.
· Aakkoskoosta riippuvuus: Subjektin tietojen nimet ja arvot on käsiteltävä aakkoskoosta riippumattomina, ellei toisin ole erikseen mainittu.
· HL7 2.4 Specification: Spesifikaatiota käytetään perustana, jos mahdollista, subjektin tietojen nimeämisessä, semantiikassa ja tietojen arvojen tyypeissä.
· Lokalisointi: Subjektin tietojen nimet tulee esittää englanniksi riippumatta maasta, jossa niitä käytetään. Sen sijaan tietojen arvot voivat olla kyseisen maan omalla kielellä.

[bookmark: _Toc84752472]Minimitoteutuksen subjektit

Kontekstinhallinnan minimitoteutuksen kontekstitiedoiksi on määritelty käyttäjä (User)- ja potilas-subjektit (Patient). Subjektit User ja Patient on otettu CCOW-standardista ja nimetty standardin mukaisesti (Seliger 2002b). Jos myöhemmin tulee tarvetta määritellä uusia subjekteja tai subjekteille lisätietoja, pitää ensin tarkistaa löytyykö CCOW-standardista sopivia subjekteja/subjektin tietoja valmiiksi määriteltyinä ja käyttää niitä. Ellei CCOW-standardista löydy tarvittavia subjekteja, täytyy ne määritellä Custom-subjekteiksi. Custom-subjektien määrittelysäännöt ovat CCOW-standardin mukaisia (Seliger 2002b). Custom-subjekteja voidaan määritellä myös kansallisesti sovituiksi. Näistä subjekteista sovitaan HL7 Finlandin teknisessä komiteassa yritysten tarpeiden mukaan. Kaikki kansallisesti käytettävät subjektit (CCOW-standardista saadut, kansallisesti määritellyt omat custom-subjektit) asetetaan saataville kansalliselta koodistopalvelimelta.

Subjektikoodiston OID tunnus on: 1.2.246.777.5.40024.2004
[bookmark: _Toc84752473]Käyttäjä-subjekti

User- eli käyttäjä-subjektia käytetään käyttäjän tunnistamiseen sovelluksessa. Identifioivana tunnuksena (id-tieto) tällä subjektilla on käyttäjän käyttäjätunnus:

· User.Id.Logon

HL7 tietotyyppi User.Id.Logon-tiedolle on string.

Käyttäjä-subjektin avulla voidaan toteuttaa kertakirjautuminen (single sign-on). Ensimmäinen sovellus, jonka käyttäjä työpöydällään käynnistää, kysyy käyttäjältä tämän käyttäjätunnuksen, jonka perusteella sovellus sitten asettaa käyttäjätunnuksen yhteiseen kontekstiin. Tämän jälkeen avattavat ja kontekstinhallintaan liittyneet sovellukset voivat käynnistyessään käyttää hyväkseen kontekstissa olevaa käyttäjätietoa ja suorittaa kirjautumisen käyttäjän puolesta.

Minimitason kontekstinhallintaratkaisussa on oletuksena, että kaikki järjestelmät käyttävät samaa geneeristä id-tunnusta ollessaan yhteydessä kontekstinhallintaan. Tämä yleinen id-tunnus on sovittava toimijoiden kesken tapauskohtaisesti. Näin Id-tiedon Suffix-osa ei ole tarpeellinen (User.Id.Logon.Suffix).. Etuna geneerisen id-tunnuksen käytöstä on käyttäjätunnusten mappauksen tarpeettomuus kontekstinhallinnassa. Tosin mahdollinen mappaus geneeristen id-tunnuksien ja järjestelmien omien käyttäjätunnuksien välillä jää järjestelmien omalle vastuulle (ellei geneerisen id-tunnuksen käyttö riitä).

Jos käyttäjäsubjektille on tarve lisätä tietoja, niitä voidaan etsiä ensin CCOW-standardista, jossa on määritelty käyttäjä-subjektille myös muita item-tietoja (Seliger 2002b, Tuomainen 2003b). Ellei CCOW-standardissa ole määritelty tarvittavia käyttäjä-subjektiin liittyviä tietoja, voidaan ne määritellä custom-subjekteiksi (custom-subject, ks. kappale 3.3.3). Nämä voivat olla joko organisaatiokohtaisia tai sitten kansallisesti sovittuja.

[bookmark: _Toc84752474]Potilas-subjekti

Patient- eli potilassubjektilla tunnistetaan potilas. Identifioivana tunnuksena (id-tieto) tällä subjektilla on Suomessa potilaan henkilöturvatunnus:

· Patient.Id.NationalIdNumber

HL7 tietotyyppi Patient.Id.NationalIdNumber-tiedolle on string.

Potilassubjektin avulla kontekstinhallintaan liittyneet sovellukset voivat synkronoida käyttäjälle näyttämänsä potilaan tiedot.

CCOW-standardissa on määritelty potilas-subjektille useita item-tietoja (Seliger 2002b, Tuomainen 2003b). Jos potilas-subjektille on tarve lisätä tietoja, niitä voidaan etsiä ensin CCOW-standardista. Ellei CCOW-standardissa ole määritelty tarvittavia potilas-subjektiin liittyviä tietoja, ne voidaan määritellä custom-subjekteiksi (custom-subject, ks. kappale 3.3.3). Nämä voivat olla joko organisaatiokohtaisia tai sitten kansallisesti sovittuja.

[bookmark: _Toc84752475]Custom Subjects

Yksittäisellä organisaatiolla voi olla tarve luoda uusia subjekteja omiin käyttötarpeisiinsa, ellei niitä löydy jo valmiiksi määriteltyinä. Tällöin voidaan määritellä itse omia custom-subjekteja. Custom-subjektit on määriteltävä kuten CCOW-standardissa (Seliger 2002b). Näin itse määritellyt subjektit eivät ole ristiriidassa CCOW-standardissa valmiiksi määriteltyjen subjektien kanssa.

Custom-subjektien erottaminen muista subjekteista tapahtuu käyttämällä erikseen määriteltyä avainsanaa. Avainsanana käytetään custom subjektia käyttävän organisaation World Wide Web Consortium (W3C) domain-nimeä. Tällaisella tekniikalla eri organisaatioiden määrittelemät custom-subjektit voidaan tunnistaa ja erottaa toisistaan.

Jos jollekin custom-subjektille ja sen tiedoille tulee tarvetta yleisempäänkin käyttöön, voidaan ne määritellä kansallisesti sovituiksi. Kansallisesti sovitut subjektit on muodostettava custom-subjektien määrittelysäännöillä. Kansallisesti sovittujen subjektien avainsanana käytetään HL7 Finlandin domain-nimeä hl7.fi.

Taulukossa 1 on esimerkkejä custom-subjekteista.

Taulukko 1. Esimerkkejä custom subjektien määrittelystä.
	Custom subjekti
	Selitys

	[hl7.fi]DateRange
	Oma uusi subjekti (DateRange), jota ei löydy standardista

	[hl7.fi]DateRange.Id.[hl7.fi]StartDate
	Oma uusi subjekti (DateRange) ja sille oma uusi item (tieto alkamispäivä, StartDate), Id-osa CCOW-standardin mukainen

	Patient.An.[hl7.fi]Current_medications
	Standardisubjektiin (Patient) lisätty oma uusi item (Current_medications), An-osa CCOW-standardin mukainen

[bookmark: _Toc84752476]Subjektit ja turvallisuus

Organisaatioin sisäisen käyttöön tarkoitetussa minimitason kontekstinhallintaratkaisussa riittää subjekteja käyttävän sovelluksen tunnistaminen. Näin erillisiä rajapintoja (Tuomainen 2003a), joiden avulla selvitettäisiin sovelluksen oikeudet hakea ja asettaa tiettyjä subjekteja kontekstiin, ei tarvita.

Tässä kuitenkin huomattava turvallisuuden kannalta tärkeä asia: Käyttäjäsubjektia ei turvallisuussyistä saa asettaa minimitoteutuksen SetItemValues-metodilla, ellei turvallisuutta ole jollain toteutuskohtaisella tekniikalla varmistettu. Tätä on käsitelty tarkemmin kappaleessa 4.3.1 Käyttäjäkonteksti & turvallisuus sekä luvussa 8 Turvallisuus.

[bookmark: _Toc84752477]Kontekstinhallintaa liittyminen, kontekstimuutosten toteuttaminen ja kontekstinhallinnasta eroaminen

Kontekstimuutosten toteuttamiseksi minimitoteutuksessa context managerin tarvitsee toteuttaa vain kontekstinhallintaan liittymisessä ja siitä eroamisessa, sekä kontekstin tietosisällön käsittelyssä tarvittavat metodit. Tiedon käsittely tapahtuu yksinkertaisilla get/set –metodeilla. Context manager ei kutsu osallistuvia sovelluksia (ei CCOW-standardin ilmoituksia kontekstin muutoksista tai kartoituksen tuloksista).

Minimitoteutuksessa kontekstiin kohdistuvat haut tapahtuvat käyttäjälähtöisesti potilaskontekstin osalta, taustalla ei ole CCOW-standardin automatiikkaa. Käytännössä tämä tarkoittaa sitä, että käyttäjä päättää, milloin sovellus hakee viimeisimmäksi käsitellyn potilaan tunnuksen kontekstista tai hakeminen perustuu välillisesti johonkin käyttäjän toimeen (esim formloadiin). Haluttaessa potilaskonteksti voidaan hakea myös aina, kun sovellus avataan ensimmäisen kerran.

Käyttäjätunnuksen osalta toimintoketju on käyttäjästä riippumaton. Käyttäjätunnus haetaan kontekstista, kun halutaan toteuttaa kertakirjautuminen.

[bookmark: _Toc84752478]Kontekstinhallintaan liittyminen

Sovelluksen on liityttävä (Join) kontekstinhallintaan ennen kuin se voi kutsu muita kontekstinhallinnan metodeja. Missä vaiheessa sovellus omassa logiikassaan sitten liittyy kontekstinhallintaan, on ratkaistava toteutuskohtaisesti.
[bookmark: _Toc84752479]Potilaskontekstin muutos

Potilaskontekstin muutosten tapahtumaketju on seuraavanlainen (oletuksena, että sovellus on jo liittynyt kontekstinhallintaa):

1. Käyttäjä valitsee potilaan käyttäen jotain integraatioon kytkettyä sovellusta.
2. Sovellus asettaa (set) kontekstia identifioivan tunnisteen (potilastunniste) context managerille.
3. Käyttäjä vaihtaa toiseen sovellukseen ja klikkaa esim. "Hae viimeisin potilas" –painiketta, jolloin sovellus hakee kontekstista viimeisimmäksi käsitellyn potilaan.
4. Sovellus sopeuttaa sisäisen tilansa ja näyttää tiedot potilaskontekstin mukaisesti (näyttää sen potilaan tiedot, jonka potilastunnuksen sai kontekstinhallinnasta).

[bookmark: _Toc84752480]Käyttäjäkontekstin muutos

[bookmark: _Toc84752481]Käyttäjäkonteksti & turvallisuus

Koska minitason kontekstinhallinnassa ei käytetä sähköisiä allekirjoituksia turvallisuuden takaamiseksi, komponenttien väliseen tunnistamiseen tulee ongelmatilanteeksi seuraavanlainen "luottamusongelma":

Minimitoteutuksen SetItemValues-metodin avulla, mikä tahansa sovellus voi näin vaihtaa käyttäjää. Tällöin kuka tahansa, joka osaa tehdä rajapintaa hyödyntävän sovelluksen, voi ilmoittaa käyttäjäksi kenet tahansa ja siten päästä helposti käsiksi mihin tahansa tietoihin samaa kontekstia käyttävissä järjestelmissä.

Ratkaisuvaihtoehdot

1. Tämä vaihtoehto pitää ottaa mukaan minimitoteutukseen pakollisena ominaisuutena, ellei turvallisuutta ole huomioitu muuten:

Käyttäjätunnuksen saa asettaa kontekstiin vain yksi ennalta määritelty sovellus (luotettu sovellus) ja se tekee sen ilman minimitoteutuksen SetItemValues-metodia, jollain muulla kontekstinhallinnan tarjoamalla metodilla. Kontekstinhallintaan voi siis asettaa SetItemValues-metodilla vain Patient.Id.NationalIdNumber-tunnuksen. GetItemValues-metodia voivat sitten käyttää kaikki sovellukset ja sen avulla mahdollistetaan single sign-on ja potilaskontekstin hakeminen.

Ratkaisuvaihtoehdon rajoitteena on sen soveltuminen ainoastaan kontekstinhallintaratkaisuun, joka on tarkoitettu organisaation sisäisesti käytettäväksi.

2. Toisena vaihtoehtona on käyttäjätunnuksen asetus SetItemValues-metodilla siten, että käytetään jotain yleisesti käytettävää ratkaisua komponenttien autentikointiin ja tiedon eheyden varmistamiseen. Esimerkiksi SSL:ää käyttämällä voidaan toteuttaa eri osapuolien autentikointi, tiedon eheyden varmistaminen ja tiedon salaus.

3. Kolmantena ratkaisuna tähän voisi olla CCOW-standardin secure rajapinnat, joissa eri komponenttien autentikointi perustuu sähköisiin allekirjoituksiin. Näiden toteuttaminen on kuitenkin suhteellisen raskasta, josta minimitoteutuksessa on yritetty päästä eroon.

[bookmark: _Toc84752482]Käyttäjäkontekstinmuutokset

Tässä oletuksena, että on yksi sovellus, joka saa asettaa käyttäjätunnuksen kontekstiin.

Käyttäjäkontekstin muutos ei ole käyttäjän itsensä ohjaamaa, vaan hänen näkökulmastaan automaattista. Näin mahdollistetaan kertakirjautuminen eri sovelluksiin. Tämä tarkoittaa seuraavaa:

· Kun sovellusta avataan ja se liittyy kontekstinhallintaan, tarkistaa sovellus onko kontekstinhallinnassa jo käyttäjätunnus (= käyttäjä on jo kerran kirjautunut johonkin kontekstinhallintaan kirjautumisen mahdollistavaan luotettuun sovellukseen). Jos on, hakee sovellus käyttäjätunnuksen kontekstista ja suorittaa automaattisen sisäänkirjauksen.
· Jos sovellusta avattaessa kontekstissa ei ole käyttäjätunnusta (= käyttäjä ei ole vielä kirjautunut kontekstinhallintaan kirjautumisen mahdollistavaan luotettuun sovellukseen) on olemassa seuraavat vaihtoehdot:
· Jos sovelluksella, johon käyttäjä on kirjautumassa, on oikeus asettaa käyttäjä kontekstinhallintaan, pyydetään käyttäjää kirjautumaan, jonka jälkeen sovellus asettaa käyttäjätunnuksen kontekstiin
· Jos sovelluksella ei ole oikeutta asettaa käyttäjää kontekstiin, on käyttäjän kirjauduttava vain tähän sovellukseen ja käytettävä sitä ilman kontekstinhallintaa tai sitten käyttäjän on ensin kirjauduttava luotettuun sovellukseen.

Näin käyttäjäkontekstinmuutosten tapahtumaketju on seuraavanlainen:

1. Käyttäjä avaa sovelluksen, joka liittyy kontekstinhallintaan.
2. Sovellus tarkistaa, onko käyttäjä jo kirjautunut kontekstinhallintaan luotetun sovelluksen välityksellä.
a. Jos käyttäjä on kirjautunut, sovellus hakee käyttäjätunnuksen kontekstista ja kirjaa käyttäjän sovellukseen
b. Ellei käyttäjä ole kirjautunut, sovellus pyytää käyttäjää kirjautumaan ilman kontekstinhallintaa. Jos kyseessä on luotettu sovellus, käyttäjäkonteksti voidaan asettaa. Näin käyttäjä kirjautuu sovellukseen ja sovellus asettaa kirjauksen jälkeen käyttäjätunnuksen kontekstiin.
3. Vaiheet 1 ja 2 toistetaan aina kun uusi sovellus aukaistaan.
4. Sovelluksia suljettaessa tai käyttäjän kirjautuessa ulos sovelluksesta sovellus eroaa kontekstista.

[bookmark: _Toc84752483]Kontekstinhallinnasta eroaminen

Sovellusta suljettaessa tai siitä uloskirjautumisessa on huomioitava:
· Sovelluksen on erottava kontekstista.
· Kun viimeinenkin sovellus eroaa kontekstista, on kontekstinhallinnan lopetettava työpöydän yhteisen kontekstin ylläpito.

[bookmark: _Toc84752484]Sessionhallinta, elinkaari ja identifioiminen

Context manager-komponentin yhteydessä aikaväliä, jossa yksi tai useampi ohjelma on yhteydessä komponenttiin, kutsutaan sessioksi. Sessio alkaa, kun ensimmäinen ohjelma liittyy kontekstinhallintaan ja päättyy kun viimeinen ohjelma katkaisee yhteyden kontekstinhallintaan.

Sessionhallinnalla puolestaan tarkoitetaan context manager-komponentin kykyä huolehtia mm. seuraavista asioista:
· elinkaaren hallinta (session luominen ja tuhoaminen)
· session identifioiminen
· session tilan ylläpito (esim. aktivointi, passivointi ja kontekstin säilyttäminen)
· komponentin oman elinkaaren hallinta (instantiointi, tuhoaminen)

Minimitoteutuksessa kontekstiin liittyvien sovellusten identifiointi toteutetaan käyttämällä seuraavia parametreja:
· applicationName: sovelluksen yksilöllinen nimi. Liittyessään kontekstinhallintaan sovellus tunnistautuu context manager-komponentille nimensä avulla. Sovelluksen nimellä voidaan myös konfiguroida etukäteen context managerille, mitkä sovellukset voivat osallistua yhteiseen kontekstiin. Se konfiguroidaanko sallitut sovellukset etukäteen context managerille, on ratkaistava toteutuskohtaisesti.

Jos samasta sovelluksesta on tarpeen luoda useita ilmentymiä, jotka liittyvät samaan kontekstinhallintasessioon, pitää ne erotella toisistaan. Sovelluksen on huomioitava tämä vaatimus sovelluslogiikassaan. Yksi tapa yksilöidä sovellukset voisi olla esimerkiksi sovelluksen nimen perään lisättävä sovellusta yksilöivä string #-merkillä erotettuna (esim. Sovellus#1, Sovellus#2, jne..)
· participantCoupon: tunnus, jonka context manager-komponentti antaa sovellukselle sen liittyessä kontekstinhallintaan. Parametri yksilöi kontekstiin osallistuvan sovelluksen ja sovelluksen on käytettävä sitä jatkossa ollessaan yhteydessä context manageriin.
· työaseman ip: tarvitaan työaseman tunnistamiseen, jos context manager on palvelimella. Parametrin käyttöä on pohdittu kappaleessa 7.3 Sessionhallinta sekä liitteen 2 kappaleessa 1.2 Työaseman identifioiminen.

Parametreja käytetään seuraavasti:
· Kun sovellus liittyy kontekstinhallintaan, tunnistetaan se applicationName-parametrin avulla.
· Liittymisen yhteydessä sovellukselle on annettava uusi participantCoupon-tunniste
· Kun sovellus taas eroaa kontekstinhallinnasta, on sen käytettävä saamaansa participantCoupon-tunnusta, jotta context manager komponentti voisi ylläpitää listaa kontekstinhallintaan osallistuvista sovelluksista ja lopettaa session, kun viimeinenkin sovellus on katkaissut yhteyden.
· participantCoupon-tunnusta käytetään sovelluksen tunnistamiseen myös muissakin metodeissa (get/set).

Kontekstitunnistetta (contextCoupon) ei minimitoteutuksessa tarvita, koska kontekstissa säilytetään vain tuoreinta, viimeksi asetettua kontekstia (ei ehdotettua kontekstia).
[bookmark: _Toc84752485]Minimitoteutuksessa tarvittavat rajapinnat

Minimitason kontekstinhallintaratkaisun mukaisen kontekstinhallinnan toteuttamiseen riittävät tässä luvussa läpikäytävät CCOW-standardista sovelletut ja riisutut rajapinnat ja metodit. Nämä rajapintamääritykset ovat tekniikkariippumattomia. Näiden rajapintojen käyttäminen HTTP-tekniikalla on käyty läpi luvussa 7. Täydelliset CCOW-standardin rajapinnat löytyvät dokumentista “Technology- and Subject-Independent Component Architecture” (Seliger, Royer 2002).

[bookmark: _Toc84752486]Rajapintojen, metodien, parametrien ja subjektien nimeäminen

[bookmark: _Toc84752487]Rajapinnat

Rajapinnat nimetään seuraavasti:
ContextManager, ContextData – kaikki sanat alkavat isolla ja kirjoitetaan yhteen.

[bookmark: _Toc84752488]Metodit

Metodit nimetään seuraavasti:
JoinCommonContext, LeaveCommonContext, SetItemValues, GetItemValues – kaikki sanat alkavat isolla ja kirjoitetaan yhteen.
[bookmark: _Toc84752489]Parametrit

Sekä input että output-parametrit nimetään seuraavasti:
applicationName, particpantCoupon, itemNames, itemValues – ensimmäinen sana pienellä seuraavat alkavat isolla ja sanat kirjoitetaan yhteen.

[bookmark: _Toc84752490]Poikkeukset

Poikkeukset nimetään seuraavasti:
GeneralFailure, BadItemNameFormat – kaikki sanat alkavat isoilla kirjaimilla ja kirjoitetaan yhteen.
[bookmark: _Toc84752491]Subjektit

Subjektien nimet ja arvot käsitellään aakkoskoosta riippumattomina (ks. luku 3).

[bookmark: _Toc84752492]CM (ContextManager-rajapinta, kontekstinhallintaan liittyminen ja siitä eroaminen)

[bookmark: _Toc84752493]JoinCommonContext

Tätä metodia kutsumalla sovellus ilmaisee kontekstihallinta-komponentille, että se haluaa liittyä kontekstinhallintaan. Kontekstinhallinta-komponentti palauttaa sovellukselle participantCoupon-tunnisteen.

· inputs(string applicationName)
· outputs(long participantCoupon)
· raises(AlreadyJoined,
TooManyParticipants,
GeneralFailure,
NotImplemented)

	Input-parametri
	string applicationName

	Merkitys
	Kutsuvan sovelluksen yksilöllinen nimi. Nimen avulla kontekstinhallintapalvelu tunnistaa palveluun liittyvän sovelluksen.

	Toteutus-näkökulma
	Liittyessään kontekstinhallintaan sovellus tunnistautuu context manager-komponentille nimensä avulla. Sovelluksen nimellä voidaan myös konfiguroida etukäteen context managerille, mitkä sovellukset voivat osallistua yhteiseen kontekstiin. Konfiguroidaanko sallitut sovellukset etukäteen context managerille, on ratkaistava toteutuskohtaisesti.

Jos samasta sovelluksesta on tarpeen luoda useita ilmentymiä, jotka liittyvät samaan kontekstinhallintasessioon, pitää ne erotella toisistaan. Sovelluksen on huomioitava tämä vaatimus sovelluslogiikassaan. Yksi tapa yksilöidä sovellukset voisi olla esimerkiksi sovelluksen nimen perään lisättävä sovellusta yksilöivä string #-merkillä erotettuna (esim. Sovellus#1, Sovellus#2, jne..)

	Output-parametri
	long participantCoupon

	Merkitys
	Sovellus käyttää tätä kontekstinhallintapalvelun antamaa coupon-arvoa tunnistautumiseen aina, kun se kutsuu palvelun metodeja.

	Toteutus-näkökulma
	Tarvitaan CM komponentin oman elinkaaren hallintaan JoinCommonContext ja LeaveCommonContext kutsujen yhteydessä.

participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Poikkeustilanteet
	Merkitys

	AlreadyJoined
	Samalla nimellä (applicationName) varustettu sovellus on jo mukana kontekstinhallintapalvelussa.

	TooManyParticipants
	Jos kontekstinhallintapalveluun on määritelty maksimi määrä osallistuvien sovelluksien määrälle ja tämä määrä ylittyy.

	GeneralFailure
	Kontekstinhallintapalvelussa jotain häiriötä. Tätä käytetään, ellei ym. poikkeuksista mikään vastaa virhetilannetta. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

Tätä virheilmoitusta on myös käytettävä tilanteessa jossa kontekstinhallintapalveluun on konfiguroitu sallitut sovellukset etukäteen ja kontekstinhallintapalvelu ei tunnista sovellusta.

	NotImplemented
	Metodia ei ole toteutettu

[bookmark: _Toc84752494]LeaveCommonContext

Tätä metodia kutsumalla sovellus ilmaisee kontekstinhallinta-komponentille, että se haluaa erota kontekstinhallinnasta. Input-parametrina käytetään participantCoupon-tunnistetta, jonka sovellus sai liittyessään kontekstinhallintaan (JoinCommonContext).

· inputs(long participantCoupon)
· outputs()
· raises (UnknownParticipant,
GeneralFailure,
NotImplemented)

	Input-parametri
	long participantCoupon

	Merkitys
	Parametrilla kontekstinhallintapalvelu tunnistaa sovelluksen ja osaa katkaista yhteyden oikealta sovellukselta

	Toteutus-näkökulma
	Tarvitaan CM komponentin oman elinkaaren hallinnassa; kun kaikki osallistuvat sovellukset ovat katkaisseet yhteyden, sessio loppuu ja komponentti voidaan tuhota..

participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Poikkeustilanteet
	Merkitys

	UnknownParticipant
	Sovelluksen participantCoupon-parametri ei ole oikea.

	GeneralFailure
	Kontekstinhallintapalvelussa jotain häiriötä. Tätä käytetään, ellei ym. poikkeuksista mikään vastaa virhetilannetta. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu.

[bookmark: _Toc84752495]CD (ContextData-rajapinta, kontekstitiedon käsittely)

[bookmark: _Toc84752496]SetItemValues

Tätä metodia kutsumalla sovellus asettaa kontekstinhallinta-komponentin ylläpitämään kontekstiin kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, asetettavien tietojen nimet sekä asetettavien tietojen arvot.

· inputs(long participantCoupon,
string[] itemNames,
string[] itemValues)
· outputs()
· raises (UnknownParticipant,
NameValueCountMismatch,
BadItemNameFormat,
BadItemType,
BadItemValue,
GeneralFailure,
NotImplemented)

	Input-parametri
	long participantCoupon

	Merkitys
	Sovellus käyttää tätä kontekstinhallintapalvelun antamaa coupon-arvoa tunnistautumiseen aina, kun se kutsuu palvelun metodeja.

	Toteutus-näkökulma
	participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Input-parametri
	string[] itemNames

	Merkitys
	Sovellus asettaa tällä parametrilla kontekstinhallintaan asettavan/asetettavien subjektin tietojen nimet.

	Toteutus-näkökulma
	Taulukon alkiot vastaavat itemValues parametrin arvoja. Esim. alkiossa 1 oleva tietonimi vastaa itemValues taulukon alkiota 1.

Sovelluksen asetettava aina muiden tietojen mukana myös subjektin Id-tieto. Näin voidaan varmistua, etteivät tiedot yhdisty vahingossa väärään subjektiin.

Kontekstipalvelun on poistettava kontekstista kaikki edellisestä subjektista riippuvaiset tiedot ja subjektit, kun sovellus asettaa uuden subjektin tietoja (tilanteessa, jossa subjektille asetetaan uusi id-tieto).

Jos Id-tieto ei muutu (eli subjekti pysyy samana), ei kyseisen subjektin entisiä tietoja saa poistaa, tietoja voi ainoastaan lisätä ja muuttaa.

HUOM! Kontekstipalvelun sallittava myös User.Id.Logon (käyttäjätunnuksen) asettaminen muiden käyttäjän tietojen asettamisen yhteydessä, jos asetettava User.Id.Logon arvo on jo kontekstissa (eli luotettu sovellus on jo aiemmin asettanut käyttäjätunnuksen kontekstiin). Ei-luotettu sovellus ei saa kuitenkaan edelleenkään vaihtaa käyttäjätunnusta kontekstiin.

	Input-parametri
	string[] itemValues

	Merkitys
	Sovellus asettaa tällä parametrilla kontekstinhallintaan asettavan/asetettavien tietojen arvot.

	Toteutus-näkökulma
	Myös tyhjien arvojen asettaminen sallitaan.

Sovelluksen on asetettava aina subjektin Id-tiedon arvo, jos se asettaa myös muita subjektin item-tietojen arvoja.

	Poikkeustilanteet
	Merkitys

	UnknownParticipant
	Sovelluksen participantCoupon-parametri ei ole oikea.

	NameValueCountMismatch
	itemNames ja itemValues muuttujissa on eri määrät muuttujia.

	[bookmark: OLE_LINK3]BadItemNameFormat
	sovellus yrittää asettaa tietoa (itemiä), jonka nimeämismuoto on väärä.

Edellytyksenä, että kontekstinhallinta tarkistaa tiedon muodon. Se käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	BadItemType
	jollekin kontekstin tiedoista yritetään syöttää väärää tietotyyppiä (esim. lukukenttään string-muuttuja).

Edellytyksenä on, että koordinaattori tarkistaa tiedon muodon. Käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	BadItemValue
	yritetään asettaa tietoa jonka arvo on erikseen määritelty kelvottomaksi.

Edellytyksenä on, että koordinaattori tarkistaa asetettavan tiedon arvon. Käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	GeneralFailure
	Kontekstinhallintapalvelussa jotain häiriötä. Tätä käytetään, ellei ym. poikkeuksista mikään vastaa virhetilannetta. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu.

[bookmark: _Toc84752497]GetItemValues

Tätä metodia kutsumalla sovellus hakee kontekstinhallinta-komponentin ylläpitämästä kontekstista kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, sekä haettavien tietojen nimet. Paluuarvona sovellus saa haettavien tietojen arvot, jos niitä on löytynyt kontekstista.

· inputs(long participantCoupon, string[] itemNames)
· outputs(string[] itemValues)
· raises(BadItemNameFormat,
UnknownItemName,
GeneralFailure,
NotImplemented,
UnknownParticipant)

	Input-parametri
	long participantCoupon

	Merkitys
	Sovellus käyttää tätä kontekstinhallintapalvelun antamaa coupon-arvoa tunnistautumiseen aina, kun se kutsuu palvelun metodeja.

	Toteutus-näkökulma
	Tätä parametria ei ole CCOW-standardin vastaavassa rajapinnassa. Minimitoteutuksessa parametri on mukana, koska siinä ei käytetä standardin secure-rajapintoja, joiden avulla sovellus voidaan tarvittaessa tunnistaa.

participantCoupon-tunniste on tietotyypiltään long. Tunnisteen pitää olla sovellusta kontekstisessiossa yksilöivä.

	Input-parametri
	string[] itemNames

	Merkitys
	itemNames taulukko sisältää ne kontekstin item-nimet, joihin liittyvät arvot kontekstinhallinnan halutaan palauttavan

	Toteutus-näkökulma
	Sovelluksen on haettava aina muiden tietojen mukana myös subjektin Id-tieto. Näin sovellus voi varmistua, että kontekstissa on haettavan subjektin tiedot..

	Output-parametri
	string[] itemValues

	Merkitys
	tässä parametrissa kontekstinhallinnasta palautuu sovellukselle tiedot, jotka vastaavat input-parametria string[] itemNames.

	Toteutus-näkökulma
	[bookmark: OLE_LINK4]Jos haetaan item-tietoa, jonka nimi-arvo-paria ei ole asetettu kontekstiin, ei palauteta mitään (ei nimeä eikä arvoa) Muut haettavat tiedot palautetaan.

Jos haetaan item-tietoa, jonka arvo on asetettu tyhjäksi, palautetaan tiedon nimi ja arvo tyhjänä, sekä mahdolliset muut item-tiedot normaalisti.

Tietojen ei tarvitse olla tietyssä järjestyksessä parametrissa, eikä kontekstinhallintapalvelu saa olettaa tiettyä järjestystä.

	Poikkeustilanteet
	Merkitys

	BadItemNameFormat
	Sovellus yrittää hakea tietoa (itemiä), jonka nimeämismuoto on väärä.

Edellytyksenä, että kontekstinhallinta tarkistaa tiedon muodon. Se käytetäänkö tarkistamista, on ratkaistava toteutuskohtaisesti.

	UnknownItemName
	Tällä virheellä voidaan ilmaista, tukeeko kontekstipalvelin tiettyä ItemName:a.

Poikkeus ilmenee, jos ItemName-tarkistaminen on toteutettu kontekstipalvelimeen (valinnainen ominaisuus).

	GeneralFailure
	Kontekstinhallintapalvelussa jotain häiriötä. Tätä käytetään, ellei ym. poikkeuksista mikään vastaa virhetilannetta. Sovelluksen pitää pystyä toimimaan ilman yhteyttä palveluun.

	NotImplemented
	Metodia ei ole toteutettu.

	UnknownParticipant
	Sovelluksen participantCoupon-parametri ei ole oikea.

[bookmark: _Toc84752498]Rajapintojen käyttöesimerkki

Seuraavassa kuvassa (kuva 2) käydään läpi rajapintojen käyttöesimerkki.

Kuva 2. Rajapintojen käyttäminen.

Oletuksena on, että kontekstinhallinnassa on jo käyttäjäkonteksti (= käyttäjätunnuksen nimi User.Id.Logon sekä käyttäjätunnuksen arvo, esim. mituomai).

1. Sovellus liittyy kontekstinhallintaan kutsumalla metodia JoinCommonContext.

Input-parametrina on sovelluksen nimi Sovellus (applicationName-parametrin arvona).

Metodin paluuarvona sovellus saa kontekstinhallinnalta participantCoupon-tunnisteen (98765).

2. Sovellus hakee kontekstinhallinnasta GetItemValues-metodilla sinne asetetun käyttäjätunnuksen voidakseen suorittaa kertakirjautumisen.

Input-parametrina sovellus antaa vaiheessa 1 saamansa participantCoupon-tunnisteen (98765) sekä haettavan kontekstitiedon nimen, eli tässä tapauksessa käyttäjätunnuksen nimen User.Id.Logon (itemNames-parametrin arvona)

Metodin paluuarvona sovellus saa kontekstinhallinnalta käyttäjän käyttäjätunnuksen mituomai (itemValues-parametrin arvona)

3. Vaihtaessaan/vaihdettuaan potilasta, sovellus asettaa kontekstinhallintaan potilaskontekstin kutsumalla metodia SetItemValues.
Input-parametrina sovellus antaa vaiheessa 1 saamansa participantCoupon-tunnisteen (98765) sekä asetettavan kontekstitiedon nimen ja arvon, eli tässä tapauksessa potilastunnuksen nimen Patient.Id.NationalIdNumber sekä sen arvon 230474-xxxx.

4. Lopuksi sovellus eroaa kontekstinhallinnasta kutsumalla metodia LeaveCommonContext.

Input-parametrina sovellus antaa vaiheessa 1 saamansa participantCoupon-tunnisteen.

[bookmark: _Toc84752499]Palvelinpohjainen kontekstinhallinta

Tähän mennessä tässä dokumentissa käydyt määrittelyt ovat olleet tekniikkariippumattomia. Tässä luvussa käytävät määrittelyt ovat web-tekniikalle.

[bookmark: _Toc84752500]Arkkitehtuuri

Kuvassa 3 esitellään arkkitehtuuri, jolla on mahdollista toteuttaa palvelinpohjaista kontekstinhallintaa, jossa on mukana sekä työasemasovelluksia että web-sovelluksia.

Kuva 3. Palvelinpohjainen arkkitehtuuri.

Kuvaselitykset:

Sovellus / Web-sovellus
Mikä tahansa terveydenhuolto-organisaation tietojärjestelmäkokonaisuuden osa, joka on tarkoitettu tietyn erityisen osatoiminnan tukemiseen. Voi olla erillinen kliininen tai potilashallinnollinen sovellus tai osa laajempaa kokonaisjärjestelmää, kertomusjärjestelmä, portaali, aluetietojärjestelmä, yms.

WWW-palvelin
	WWW-palvelin, joka jakelee ja ylläpitää Web-erillissovelluksien sivuja.

http-yhteyskomponentti
Komponentti tai muu vastaava ohjelmakirjasto (liitin), joka osaa lähettää http(s)-sanoman ja vastaanottaa palautetun viestin.

http-keskustelija
Esimerkiksi WWW-palvelin tai muu yksinkertaisempi komponentti joka osaa vastaanottaa http(s)-viestejä ja palauttaa vastauksen kutsujaosapuolelle.

Kontekstinhallintapalvelutoteutus
Ohjelmakomponentti, luokka tai muu kokonaisuus, joka sisältää itse palvelun toteutuksen eli toteuttaa palvelurajapinnan.

Palvelurajapinta
Ohjelmistorajapinta, jonka kautta sovellus tarjoaa ohjelmistopalveluita (operaatioita, suorittaa tehtäviä) toiselle sovellukselle.

Palvelua käyttävä sovellus kutsuu palvelun toteutuksen tarjoamia operaatioita http-protokollan avulla. Palvelun toteutus muodostuu http-palvelimesta (esim. web-palvelin) sekä palvelun sisällöstä vastaavasta sovelluksesta. Palvelua käyttävissä sovelluksissa on tieto siitä, missä osoitteessa palvelun toteutus on, ja niihin on toteutettu http-yhteyttä hyödyntävä osa tai sovitin, joka ottaa yhteyttä palvelun toteutukseen. Palvelun osoite voidaan myös parametrisoida sovellukseen tarvittaessa.

Sovellus voi tehdä palvelukutsun itse tai sen voi hoitaa erillinen palvelun tarjoajan rakentama http-yhteyskomponentti (liitin), joka kapseloi palvelurajapinnan käytön. Palvelua käyttävässä sovelluksessa tai liittimessä huolehditaan tarvittavien parametrien asettamisesta palvelupyyntöihin sekä tulleiden vastausten käsittelystä.

Palvelutoteutuksen rajapinta toimii kokonaisuudessaan synkronisella kysely-vastaus-periaatteella. Se tarkoittaa sitä, että palvelu vastaa yhteen kyselyyn (ts. palvelun jonkun operaation kutsumiseen) kerrallaan välittömästi yhdellä vastauksella. Itse palvelut suunnitellaan toimivaksi siten, että ne voivat ottaa tilattomuudestaan johtuen palvelukutsuja vastaan ilman jonoa.

[bookmark: _Toc84752501]Tekniikka

Viestinvälityksessä käytetään teknisenä standardina HTTP-protokollaa yksinkertaisin string-parametrein. HTTP -protokolla on yksinkertainen hajautettujen palvelujen kutsuun soveltuva tekniikka. Se on laajassa käytössä oleva www-tekniikka.

Tekniikan tulee mahdollistaa hajautettu rajapinta eli palvelua (esim. potilaan perustietoja) tarjoava sovellus sisältää palvelinosan (Server), johon asiakas (Client) ottaa yhteyden verkon yli. Palvelinosa voi sijaita esimerkiksi web-palvelimella. Tekninen ratkaisu on asiakkaan kannalta synkronoitua toiminnallisuutta, jossa palvelun pyytäjä jää odottamaan vastausta palvelinosalta, joka palauttaa vastauksen välittömästi. Palvelun toteuttajan (palvelinosan) on kuitenkin kyettävä ottamaan vastaan useita yhtäaikaisia tai peräkkäisiä kutsuja eri asiakkailta. Palvelujen (URL-muotoisen) kutsuosoitteen pitää olla parametrisoituna sovelluksessa.

Ratkaisujen on oltava liitettävissä ainakin sekä Windows-työasema- että web-pohjaisiin sovelluksiin, joissa voi olla toteutuskielenä myös Java. Pilotoinnissa käytettävissä sovelluksissa on käytetty client/server –pohjaisia tekniikoita ja Windows-työasematekniikoita.

Varsinkin siirtyminen Web-ympäristöön aiheuttaa lisävaatimuksia turvallisuuden suhteen, esimerkiksi kontekstinhallintaa käyttävien työasemien erottaminen toisistaan vaikeutuu huomattavasti ja vaatii lisätoiminnallisuutta. Tässä dokumentissa esitetyt rajapinnat määrittävät turvallisuuden suhteen ns. minimitason, jossa oletetaan palveluja käyttävien työasemien sijaitsevan samassa suojatussa sisäverkossa (intranet), jolloin ne voidaan erottaa toisistaan IP-osoitteen perusteella

Toteutuksen turvallisuus voidaan esimerkiksi toteuttaa käyttämällä HTTPS (HTTP Secure) –yhteyksiä HTTP-yhteyksien sijaan. HTTPS:n avulla turvallisuusnäkökohtia ei tarvitse ottaa huomioon viestien sisältöä suunniteltaessa, koska sen tarjoama viestien salaus toimii alemmalla protokolla-tasolla. Tämän ansiosta HTTPS toimii yhteen myös esimerkiksi SOAP-viestien kanssa myöhemmin (”SOAP-over-HTTPS”) jos niihin on tarvetta. Lisäksi HTTPS voidaan jättää helposti pois tarvittaessa, jos turvallisuus on muuten varmennettu. Muita tapoja toteuttaa turvallinen HTTP-pohjainen viestinvälitys on mm:

· SOAP-pohjaiset turvallisuusmääritykset
· W3C:n määritykset (XML Encryption ja XML Signature)
· Yleisten salausalgoritmien hyödyntäminen

[bookmark: _Toc84752502]Sessionhallinta

Palvelinympäristössä sessionhallinta on huomattavasti haastavampi tehtävä kuin työasematasolla. Komponentille joudutaan asettamaan useita vaatimuksia, jotka voidaan useimmiten sivuuttaa työasematason ratkaisussa. Ensimmäinen ja ehkä suurin ero on siinä, että palvelimella ajettava komponentti joutuu vastaamaan useamman työpöydän kontekstinhallinnasta yhtäaikaisesti siinä missä työasematasolla yleensä riittää paikallisen työpöydän hallinta.

Käytännössä palvelimella joudutaan ajamaan esimerkiksi useaa rinnakkaista CM komponenttia, joista jokainen vastaa yhden työpöydän kontekstinhallinnasta (kuva 4).

Kuva 4 Usean työpöydän kontekstinhallinta palvelinympäristössä.

Esimerkiksi useamman CM-komponentin yhtäaikainen ajaminen ja ylläpito aiheuttavat toteutukselle lisävaatimuksia:

· Komponentista on voitava luoda uusi ilmentymä silloin, kun työasemalla käynnistetään ensimmäinen ohjelma, joka hyödyntää työpöytäintegraatiota (ts. aloitetaan uusi sessio). Uusi ilmentymä tulee tämän jälkeen vastaamaan tämän työpöydän kontekstinhallinnasta.
· Jokaisen komponentin ilmentymän on säilytettävä omaa tilaansa. Komponentit eivät voi jakaa yhteistä tilaa, koska jokainen komponentti vastaa eri työaseman kontekstista ja sisältää näin eri tiedot.
· Komponentin tilan (=kontekstin) on säilyttävä kutsujen välillä. Tämä voidaan saavuttaa esim. hallitsemalla komponentin elinkaarta siten, että komponentti, joka palvelee aktiivista sessiota, säilytetään palvelimen muistissa kunnes sessio päättyy (viimeinenkin integraatioon osallistuva sovellus katkaisee yhteyden komponenttiin). Toinen ratkaisu on tallentaa komponentin tila kutsujen välillä.

Sessionhallinnan lisäksi komponentin toteutuksessa on huomioitava identifikaatioon liittyvät vaatimukset. Työasemalta tulevat kutsut on pystyttävä välittämään sille komponentille, joka vastaa ko. työaseman kontekstinhallinnasta (esim. kuvassa 4 työaseman A kutsut tulisi ohjata komponentille A). Palvelimelle on siis toteutettava pelkän CM komponentin lisäksi logiikka, joka ohjaa kutsut oikean ilmentymän käsiteltäväksi.

Työaseman identifiointi on mahdollista toteuttaa ainakin selvittämällä kutsuista työasemakohtainen IP-tunnus. Tässä kohdin kuitenkin ongelmaksi muodostuu esim. mahdolliset NAT-osoitteet. Eri työasemat saattavat näin näkyä kontekstinhallinnalle samana IP-osoitteena. Tätä on pohdittu liitteen 2 kappaleessa 1.2 Työaseman identifioiminen.

[bookmark: _Toc84752503]Pollaukset

Palvelinpohjaisessa ratkaisussa on otettava huomioon seuraavat kaksi web-tekniikasta seuraavaa ongelmaa:
Mikäli kontekstinhallintapalvelu ”kaatuu”, on sovelluksen osattava toimia ilman kontekstinhallintaa. Miten sovellus voi tarkistaa kontekstinhallintapalvelun toiminnan, muuten kuin saamalla virheilmoituksen palvelimelta kutsuessaan kontekstinhallintapalvelun metodeja? Minimikontekstinhallinnan määrittelyn versiossa 1 tähän ei ole standardi-ratkaisua. Tätä ongelmaa on pohdittu jatkokehitysehdotuksissa liitteen 2 kappaleessa 1.1.
Mikäli kontekstinhallintaan liittynyt sovellus ”kaatuu”, muodostuu ongelmaksi kontekstinhallintapalveluun roikkumaan jäävät turhat sovellukset. Kontekstinhallintapalvelu mahdollisesti olettaa, että kontekstia pitää vielä pitää yllä, koska kaikki sovellukset eivät ole eronneet kontekstinhallinnasta.

Miten kontekstinhallintapalvelu voi tarkistaa sovellusten olemassa olon? Minimikontekstinhallinnan määrittelyssä ei ole tähän standardi-ratkaisua. Tätä ongelmaa on pohdittu liitteen 2 kappaleessa 1.1.
[bookmark: _Toc84752504]Metodit http-viesteillä

Minimitoteutuksessa käytetään CCOW-standardissa esitettyä tapaa muodostaa metodi-kutsut ja vastaukset näihin metodeihin HTTP-viestein. CCOW-standardissa tämä on kuvattu dokumentissa ”Component Technology Mapping: Web/http” (Seliger 2002a).
[bookmark: _Toc84752505]HTTP GET / POST-viestit

Kontekstinhallintapalvelu ottaa vastaan HTTP POST/GET-viestejä siihen liittyneiltä sovelluksilta. Näin sovellukset saavat lähettää kontekstinhallintapalvelulle HTTP POST/GET-viestejä. POST-metodi poikkeaa GET-metodista siten, että POST-metodissa kutsutaan ensin palvelua ja lähetetään vasta sitten parametrit viestin body-osassa. GET-metodissa parametrit liitetään palvelukutsuun osoitteen perään erotettuna ”?”-merkillä.

[bookmark: _Toc84752506]MIME-header

Kontekstinhallintapalvelun palauttamien tietojen content-type:nä ovat text/plain ja application/x-www-form-urlencoded. Kontekstinhallintapalvelun on tuettava näitä kahta content-typea. Sovellus voi ilmoittaa hyväksymänsä content-type:n palvelukutsun accept-headerissa. Jos sovellus ei aseta accept-headeria, palvelimen pitää palauttaa tiedot text/plain-muodossa. Näin PlugIT:n aikaisen minimikontekstinhallintamäärityksen mukainen sovellus toimii myös application/x-www-form-urlencoded content-type:n toteuttavan palvelimen kanssa. Tämä helpottaa myös sellaisten sovellusten toteutusta, jotka eivät tarvitse tietojen koodausta.

Content-type application/x-www-form-urlencoded vaatii parametrien arvojen (merkit, jotka ovat yhtäkuin-merkin (=) oikealla puolella) koodausta yhteisesti sovitulla tavalla. IETF RFC 2396 standardissa, kappaleessa 2.4 on kuvattu tapa, jolla myös tämän määrittelyn parametrien arvot on koodattava. Standardi löytyy osoitteesta http://www.ietf.org/rfc/rfc2396.txt. Lyhyt tiivistelmä arvojen koodauksesta:
Muodostetaan tavallisista (US-ASCII) aakkosista, numeroista ja joistakin erikoismerkeistä.
ASCII-merkit ‘a’ - ‘z’, ‘A’ - ‘Z’ ja ‘0’ - ‘9’ pysyvät samana.
Tyhjä välilyönti ‘ ’ pitää konvertoida plus-merkiksi ‘+’ tai %20-merkinnällä.
Kaikki muut merkit pitää konvertoida 3-merkkiseksi stringiksi “%xy”. Tällöin merkki esitettään %-merkillä ja kahdella heksadesimaaliluvulla.(xy).

[bookmark: _Toc84752507]Http-kutsun muodostaminen

Seuraavassa esimerkki viestin muodostamisesta eri osineen:

http://url.fi/cm?interface=ContextManager&method=JoinCommonContext¶m1= . . .

 (
Kutsuttava
rajapinta
) (
Kutsuttava metodi
) (
Kutsun
parametrit
) (
Kutsuttavan
komponentin
URL-osoite
)

Tässä esimerkissä kutsuttaisiin osoitteessa http://url.fi/cm sijaitsevaa context manager-komponenttia, sen ContextManager rajapintaa ja tämän rajapinnan JoinCommonContext-metodia. Tätä viestiä tutkimalla context manager pystyisi käsittelemään kutsun ja suorittamaan tarvittavat toiminnot.

Seuraavassa ovat tärkeimmät http-kutsuille määritellyt säännöt:
· kutsuttavan rajapinnan nimi ilmoitetaan interface-parametrissa, esim.
”?interface=ContextManager”
· kutsuttavan metodin nimi ilmoitetaan method-parametrissa, esim.
”&method=”JoinCommonContext”
· jos parametrina kutsussa (tai vastauksessa) lähetetään taulukko, erotellaan siinä olevat arvot ”|” – merkeillä, esim. ”&itemNames=Patient.ID.MRN.CCOW|User.ID.Logon.hospitalX”
· jos input-parametrina lähetetään null-arvo, sille ei määritellä arvoa, esim. ”&contextCoupon=”
· tyhjä merkkijonoarvo lähetetään samalla tavalla kuin null-arvo (ei arvoa)
· tyhjä taulukko lähetetään samalla tavalla kuin null-arvo (ei arvoa)
· jos kutsuttavaa rajapintaa ei ole toteutettu kontekstinhallintapalveluun, pitää palauttaa GeneralFailure-poikkeus
· jos kutsuttavaa metodia ei ole toteutettu kontekstinhallintapalveluun, pitää palauttaa NotImplemented-poikkeus
· jos kutsussa olevaa parametria ei tunneta, pitää kontekstinhallintapalvelun olla välittämättä parametrista.
· jos vaadittava parametri puuttuu kutsusta, pitää kontekstinhallintapalvelun palauttaa GeneralFailure-poikkeus.

[bookmark: _Toc84752508]Paluuarvon muodostaminen

[bookmark: _Toc55922752]Kutsutun metodin output-parametrit koodataan HTTP vastauksen body-osaan. Paluuarvojen content-type:nä ovat text/plain ja application/x-www-form-urlencoded. HTTP-vastauksen header-osan pitää sisältää standardi http-vastaus: HTTP response code 200 (OK), ellei muuta tässä määrittelyssä määritelty.

[bookmark: _Toc84752509]Poikkeukset

Poikkeukset koodataan samalla tavoin kuin output-parametrit:

· itse poikkeus annetaan parametrin exception arvoksi, exception=ExceptionName
· jos poikkeuksen viesti sisältää myös muita osia erotellaan ne &-merkillä, exception=BadItemValue&itemName=Patient.Co.Sex&itemValue=G&reason=Must be F, M, O or U
· poikkeuksien parametrina voi olla myös vapaavalintainen exceptionMessage, esim. exceptionMessage=explanation. Tässä explanation-osa eli virheen selitys on toteutuskohtaisesti toteutettavissa, standardi ei määrittele valmiita selityksiä.
· esimerkiksi exception=AlreadyJoined&exceptionMessage=Sovellus on jo liittynyt kontekstinhallintaan (exception=GeneralFailure&exceptionMessage=message).

[bookmark: _Toc84752510]CM (ContextManager-rajapinta)

Seuraavaksi käydään läpi minimitoteutuksessa tarvittavat rajapinnat ja niiden kutsuminen http-viesteillä. Metodit on muodostettu näihin CCOW-standardin version 1.4 web-osion pohjalta. Tämän kappaleen http-viesteissä poikkeuksia ei ole enää lisätty parametri-taulukoihin. Ne ovat saatavilla tekniikkariippumattoman osan rajapintakuvauksissa (ks. luku 6).

[bookmark: _Toc84752511]JoinCommonContext

Tätä metodia kutsumalla sovellus ilmaisee kontekstihallinta-komponentille, että se haluaa liittyä kontekstinhallintaan. Kontekstinhallinta-komponentti palauttaa sovellukselle participantCoupon-tunnisteen.

				HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“JoinCommonContext”

	applicationName
	string
	

	HTTP Reply Message

	participantCoupon
	long
	

JoinCommonContext

Kutsu http-viestinä:
http://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContext&applicationName=LoginMaster

Paluuarvona participantCoupon
participantCoupon=2500131

[bookmark: _Toc84752512]JoinCommonContextWithIp

HUOM!!! Tämä ei ole CCOW-standardin mukainen metodi!!!

Web-sovelluksien osalta JoinCommonContext-metodissa huomioitava IP-osoitteen välittäminen. Kun työasemasovellus on yhteydessä palvelimella olevaan kontekstinhallintaan, työaseman IP-osoite on mahdollista selvittää sovelluksen ja kontekstinhallinnan välisistä kutsuista. Web-sovellusten osalta tämä ei ole mahdollista näin yksinkertaisesti. Web-palvelimella oleva sovellus kyllä saa työaseman osoitteen mutta se on välitettävä myös kontekstinhallinnalle. Näin on tarpeellista saada välitettyä web-sovellusta käyttävän työaseman IP-osoite. Tätä varten web-sovellusten kontekstinhallintaan liittymistä varten on erillinen metodi, jossa yhtenä parametrina on myös työaseman IP-osoite.

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	interface
	string
	“ContextManager”

	Method
	string
	“JoinCommonContextWithIp”

	applicationName
	string
	

	hostAddress
	string
	Client's tcp/ip address

	HTTP Reply Message

	participantCoupon
	long
	

Tulevaisuudessa seuraavissa kontekstinhallinnan määrittelyjen versioissa voidaan pohtia, korvataanko ei-CCOW-standardin mukainen JoinCommonContextWithIp-metodi standardin mukaisella, CMR-rajapinnan Locate-metodiin perustuvalla menetelmällä tai muulla ratkaisulla. Myös mahdollisten NAT-osoitteiden tuomaan ongelmaan on löydyttävä ratkaisu. Näitä on pohdittu liitteen 2 kappaleessa 1.2 Työaseman identifioiminen.

JoinCommonContextWithIp

Kutsu http-viestinä:
http://127.0.0.1:8080/cm.psp?interface=ContextManager&method=JoinCommonContextWithIp&applicationName=LoginMaster&hostAddress=193.167.225.67

Paluuarvona participantCoupon
participantCoupon=2500131

[bookmark: _Toc84752513]LeaveCommonContext

Tätä metodia kutsumalla sovellus ilmaisee kontekstinhallinta-komponentille, että se haluaa erota kontekstinhallinnasta. Input-parametrina käytetään participant coupon tunnistetta, jonka sovellus sai liittyessään kontekstinhallintaan (JoinCommonContext).

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“LeaveCommonContext”

	participantCoupon
	long
	

	HTTP Reply Message

	Empty
	
	

LeaveCommonContext

Kutsu http-viestinä:
http://127.0.0.1:8080/cm.psp?interface=ContextManager&method=LeaveCommonContext&participantCoupon=2500131

[bookmark: _Toc84752514]CD (ContextData-rajapinta)

[bookmark: _Toc84752515]SetItemValues

Tätä metodia kutsumalla sovellus asettaa kontekstinhallinta-komponentin ylläpitämään kontekstiin kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, asetettavien tietojen nimet sekä asetettavien tietojen arvot. Huom. id-tietojen asettamisen pakollisuus (ks. kappale 6.3.1 SetItemValues).

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	interface
	string
	“ContextData”

	Method
	string
	“SetItemValues”

	participantCoupon
	long
	

	itemNames
	string[]
	

	itemValues
	string[]
	

	HTTP Reply Message

	Empty
	
	

SetItemValues

Kutsu http-viestinä:
http://127.0.0.1:8080/cm.psp?interface=ContextData&method=setItemValues&participantCoupon=2500131&itemNames=User.Id.Logon&itemValues=mituomai

tai kaikki asetettavat tiedot kerralla:
http://127.0.0.1:8080/cm.psp?interface=ContextData&method=setItemValues&participantCoupon=2500131&itemNames=User.Id.Logon|Patient.Id.NationalIdNumber&itemValues=mituomai|230474-xxxx

[bookmark: _Toc84752516]GetItemValues

Tätä metodia kutsumalla sovellus hakee kontekstinhallinta-komponentin ylläpitämästä kontekstista kontekstitietoja. Input-pametreina ovat sovelluksen participantCoupon-tunniste, sekä haettavien tietojen nimet. Paluuarvona sovellus saa haettavien tietojen arvot, jos niitä on löytynyt kontekstista. Huom. id-tietojen hakemisen pakollisuus (ks. kappale 6.3.2 GetItemValues).

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextData”

	Method
	string
	“GetItemValues”

	participantCoupon
	long
	

	itemNames
	string[]
	

	HTTP Reply Message

	itemValues
	string[]
	

GetItemValues

Kutsu http-viestinä:
http://127.0.0.1:8080/cm.psp?interface=ContextData&method=getItemValues&participantCoupon=2500131&itemNames=Patient.Id.NationalIdNumber

Paluuarvona hetu:
itemValues=Patient.Id.NationalIdNumber|230474-xxxx

tai kaikki kontekstin tiedot kerralla:
http://127.0.0.1:8080/cm.psp?interface=ContextData&method=getItemValues&participantCoupon=2500131&itemNames=Patient.Id.NationalIdNumber|User.Id.Logon

Paluuarvona hetu & käyttäjätunnus:
itemValues=Patient.Id.NationalIdNumber|230474-xxxx|User.Id.Logon|mituomai

[bookmark: _Toc84752517]Turvallisuus

CCOW-standardin tekniikkariippumaton määrittely ottaa kantaa tiedon eheyteen ja komponenttien väliseen autentikointiin. Se ei ota kantaa tiedon salaukseen, koska kontekstitieto ei ole standardin mukaan niin arkaluontoista vaan standardi jopa olettaa että tietoa ei edes ole välttämätöntä salata. CCOW-standardin Web/HTTP teknisessä määrittelyssä puolestaan vaaditaan, että aina, kun tieto liikkuu julkisessa verkossa, on se salattava. Salausmekanismina käytetään SSL v3.

Minimitoteutuksessa ei ainakaan aluksi käytetä sovellustasolle asti menevää turvallisuuden huomioonottamista. Tämä tarkoittaa siis myös sitä, että komponentit eivät autentikoi toisiaan CCOW-standardin turvallisten rajapintojen avulla. Tämän lähestymistavan etuna on, ettei turvallisuusnäkökohtia tarvitse ottaa huomioon viestien sisältöä suunniteltaessa, koska esim. https:n tarjoama viestien salaus toimii alemmalla protokolla-tasolla. Tällaisessa ratkaisussa tingitään kuitenkin turvallisuuden tasosta verrattuna CCOW-standardiin. Minimitoteutuksessa turvallisuus on otettava huomioon ainakin kappaleessa 4.3.1 Käyttäjäkonteksti & turvallisuus kuvatussa käyttäjätunnuksen välittämisessä kontekstiin.

Tulevaisuudessa määrittelyn seuraaviin versioihin on mietittävä löytyykö yhtä yhteistä standardi-ratkaisua turvallisuuden huomioimiseen vai jääkö sen toteuttaminen toteutuskohtaiseksi.

Seuraavassa on käyty läpi luotettu sovellus. CCOW-standardin tapa toteuttaa turvallisuus on kuvattu liitteestä 1.

Luotettu sovellus

Koska minitason kontekstinhallinnassa ei käytetä CCOW-standardissa käytettäviä sähköisiä allekirjoituksia turvallisuuden takaamiseksi, komponenttien väliseen tunnistamiseen tulee ongelmatilanteeksi sovellusten välinen "luottamusongelma".

Minimitoteutuksen SetItemValues-metodin avulla ei saa asettaa käyttäjää, koska tämän seurauksena mikä tahansa sovellus voisi vaihtaa käyttäjää. Kuka tahansa, joka osaisi tehdä rajapintaa hyödyntävän sovelluksen, voisi ilmoittaa kontekstinhallintaan käyttäjäksi kenet tahansa. Tämän jälkeen tämä käyttäjä voisi päästä helposti käsiksi mihin tahansa tietoihin samaa kontekstia käyttävissä järjestelmissä.

Ellei turvallisuutta ole jollakin toteutuskohtaisella tekniikalla varmistettu, käyttäjäsubjektia ei siis saa asettaa eikä vaihtaa minimitason määrittelyn SetItemValues-metodilla. Käyttäjätunnus on tällöin asetettava/vaihdettava tietyllä ennalta määritellyllä sovelluksella (luotetulla sovellus) ja asetus on tehtävä, jollain muulla kontekstinhallinnan tarjoamalla metodilla. Luotettujen sovellusten sekä muiden kuin minimitason määrittelyjen metodien määrittely on tehtävä toteutuskohtaisesti. Tässä kohdin on kuitenkin huomioitava kappaleessa 6.3.1 SetItemValues esitetty vaatimus käyttäjän Id-tiedon asettamisesta muiden käyttäjän tietojen mukana. Tällöin on kuitenkin oletuksena, että kontekstissa on jo se käyttäjä, jonka tietoja asetetaan. Käyttäjää ei siis vaihdeta.

Lähteet

	Komulainen A, Tuomainen M. CCOW -standardi ja sen toteutus Sentillion Vergence Application SDK:lla. Savonia-ammattikorkeakoulu, Savonia Business. Tradenomin opinnäytetyö. 2002.

	Seliger B, Royer B. HL7 Context Management “CCOW” Draft Standard: Technology- and Subject-Independent Component Architecture, Version 1.4. Health Level Seven. 2002.

	Seliger B. HL7 Context Management “CCOW” Draft Standard: Component Technology Mapping: Web/HTTP, Version 1.4. Health Level Seven, 2002a.

	Seliger B. HL7 Context Management “CCOW” Draft Standard: Subject Data Definitions, Version 1.4. Health Level Seven, 2002b.

	Tuomainen M. CCOW-standardi & turvallisuus. PlugIT-projekti, 2003a. http://www.plugit.fi/.

	Tuomainen M. Kontekstinhallinnan subjektit. PlugIT-projekti, 2003b. http://www.plugit.fi/.

LIITE 1. Turvallisuus CCOW-tavalla

Tulevaisuudessa seuraavissa kontekstinhallinnan määrittelyjen versioissa, jos niissä otetaan käyttöön CCOW-standardin mukaiset turvalliset rajapinnat (ks. CCOW-standardi, rajapinnat SecureBinding ja SecureContextData), joissa komponentit autentikoidaan luotettavasti, voidaan SetItemValues-metodia käyttää myös käyttäjätunnuksen kontekstiin asettamiseen.

Seuraavassa kuvataan, miten sovellus liittyy kontekstinhallintaan minimitason määrityksissä olevilla rajapinnoilla, luo turvalliset yhteydet CCOW-standardin mukaisella tavalla (rajapinta SecureBinding) ja käyttää turvallista yhteyttä tiedon hakemiseen kontekstista ja tiedon asettamiseen kontekstiin (rajapinta SecureContextData). Turvallisten yhteyksien avulla sovellus ja kontekstinhallinta voivat autentikoida toisensa ja tarkistaa tiedon eheyden vaihtaessaan tietoja toistensa välillä Tällä tavoin osapuolet voivat myös luottaa toisiinsa.

[bookmark: _Toc62004422][bookmark: _Toc67821301]Vaihe 1 - Sovellus liittyy kontekstiin

JoinCommonContext (in applicationName, out participantCoupon)

Sovellus kutsuu kontekstinhallinnan JoinCommonContext-metodia liittyäkseen kontekstinhallintaan. Sovellus antaa nimensä input-parametrina, jonka avulla kontekstinhallinta tunnistaa sovelluksen (nimi asetettu kontekstinhallintaan ennakkoon).

Paluuarvona sovellus saa kontekstinhallinnan sille luoman participantCoupon-tunnisteen, jota sovelluksen on käytettävä jatkossa ollessaan yhteydessä kontekstinhallintaan.
[bookmark: _Toc62004423]
[bookmark: _Toc67821302]Vaihe 2 - Sovellus muodostaa turvallisen yhteyden kontekstinhallintaan (SecureBinding-rajapinta)

InitializeBinding (in participantCoupon, in propertyNames, in propertyValues, out CMPublicKey, out mac)

Sovellus kutsuu kontekstinhallinnan InitializeBinding-metodia luodakseen kontekstinhallinnan kanssa turvallisen yhteyden. Sovellus antaa input-parametreina oman participantCoupont-tunnisteen, jonka se sai kontekstinhallinnalta liittyessään kontekstinhallintaan (JoinCommonContext). Lisäksi se voi antaa propertyNames/propertyValues-parametreissa esim. tietoja, joiden perusteella se haluaa turvallisen yhteyden muodostettavan. propertyNames-parametrissa on tiedon nimi ja propertyValues-parametrissa tiedon nimeä vastaava arvo.		

Paluuarvona sovellus saa kontekstinhallinnan julkisen avaimen (CMPublicKey) ja mac-luvun.
mac = Message Authentication Code = viestin loppuun lisättävä ”allekirjoitus”. Sovellus varmistaa mac-tunnisteen avulla kontekstinhallinnan aitouden ja varmistaa, ettei CMPublicKey-parametrin eheys ole rikkoutunut. Kontekstinhallinta laskee mac-tunnisteen yksisuuntaisella hash-funktiolla julkisesta avaimestaan (CMPublicKey) sekä passcode-arvosta, jonka vain sovellus ja kontekstinhallinta tietävät. Passcode-arvo ja hash-funktio ovat sovittu ennalta. Passcode on siis ennalta sovittu salaisuus. Passcode on konfiguroitu etukäteen kontekstinhallinnassa tiettyyn sovellukseen.

LIITE 1 JATKUU
LIITE 1 JATKUU

FinalizeBinding (in participantCoupon, in AppPublicKey, in mac, out privileges)

Tämän metodin avulla sovellus päättää turvallisen yhteyden perustamisprosessin, ja sille määritellään paluuarvona, mihin kontekstinhallinnan tietoihin sovelluksella on oikeus päästä. Tämä metodi voidaan suorittaa vasta, kun InitializeBinding-metodi on onnistuneesti suoritettu.

Input-parametreina ovat participantCoupon-tunniste (saatu JoinCommonContext), sovelluksen julkinen avain AppPublicKey ja mac-luku (vastaava kuin InitializeBinding-metodissa, mutta nyt sen on laskenut sovellus omasta julkisesta avaimestaan käyttäen ennalta määriteltyä passcode-arvoa ja hash-funktiota).

Output parametrissa privileges voidaan palauttaa kontekstinhallintaan määriteltyjä sovelluksen oikeuksia käsitellä kontekstia. Esim. sovellukselle voidaan palauttaa oikeudet, joiden mukaan se saa asettaa ja hakea potilaskontekstin mutta vain hakea ei asettaa käyttäjäkontekstia.

Nyt sekä sovelluksella että kontekstinhallinnalla on toistensa julkiset avaimet, joiden avulla ne voivat purkaa toistensa digitaalisia allekirjoituksia, joita käytetään SecureContextData-rajapinnassa tiedon eheyden varmistamiseen sekä komponenttien (sovelluksen ja kontekstinhallinnan) väliseen tunnistautumiseen.

[bookmark: _Toc62004424][bookmark: _Toc67821303]Vaihe 3 - Sovellus asettaa tiedon kontekstiin käyttämällä turvallista rajapintaa SecureContextData

SetItemValues (in participantCoupon, in itemNames, in itemValues, in appSignature)

Tämä on muuten vastaava metodi kuin minimitason määrittelyn mukaisen ContextData-rajapinnan metodi SetItemValues mutta lisäksi on lisätty input-parametri appSignature.

Sovellus antaa input-parametreina:
· oman participantCoupont-tunnisteen, jonka se sai kontekstinhallinnalta liittyessään kontekstinhallintaan (JoinCommonContext)
· tiedon/tietojen nimet, joita se on asettamassa kontekstinhallintaan itemNames-parametrissa
· tiedon/tietojen nimiä vastaavat arvot itemValues-parametrissa
· allekirjoituksensa appSignature. Allekirjoitus muodostetaan input-parametreista muodostamalla niistä tiiviste hash-funktiolla. Tämä tiiviste sitten salataan sovelluksen salaisella avaimella.

[bookmark: _Toc62004425][bookmark: _Toc67821304]Vaihe 4 - Sovellus hakee tietoja kontekstinhallinnasta käyttämällä turvallista rajapintaa SecureContextData

GetItemValues (in participantCoupon, in itemNames, in appSignature, out ItemValues, out CMSignature)

LIITE 1 JATKUU
LIITE 1 JATKUU

Tämä on muuten vastaava metodi kuin minimitason määrittelyn mukaisen ContextData-rajapinnan metodi GetItemValues mutta lisäksi on lisätty input-parametri appSignature sekä output-parametri CMSignature.

Sovellus antaa input-parametreina:
· oman participantCoupont-tunnisteen, jonka se sai kontekstinhallinnalta liittyessään kontekstinhallintaan (JoinCommonContext)
· tiedon/tietojen nimet, joita se on hakemassa kontekstinhallinnasta itemNames-parametrissa
· allekirjoituksensa appSignature. Allekirjoitus muodostetaan input-parametreista muodostamalla niistä tiiviste hash-funktiolla. Tämä tiiviste sitten salataan sovelluksen salaisella avaimella.

Output-parametrina sovellus saa
· hakemansa tiedon/ tietojen arvot itemValues-pametrissa
· kontekstinhallinnan allekirjoituksen CMSignature. Kontekstinhallinta muodostaa allekirjoituksensa output-parametrista itemValues muodostamalla siitä tiivisteen hash-funktiolla. Tämä tiiviste sitten salataan kontekstinhallinnan salaisella avaimella.

Kuvassa 2 on esimerkki kontekstiin liittymisestä, turvallisen yhteyden luomisesta ja kontekstitiedon asettamisesta:
[bookmark: _Toc62004426] (
InitializeBinding(98765,..)
publicKey= CMPublicKey
mac = Hash(CMPublicKey|AppPasscode)
FinalizeBinding(98765, AppPublicKey, Hash(AppPublicKey|AppPasscode))
SetItemValues(98765,<"user.id.logon">, <"robs">, AppSignature(Hash(98765|user.id.logon|robs)))
Privileges
Sovellus App
Kontekstinhallinta CM
JoinCommonContext(appName,..)
partipantCoupon = 98765
)Kuva 2. Turvallisen yhteyden muodostaminen ja käyttäminen.

LIITE 1 JATKUU
LIITE 1 JATKUU

[bookmark: _Toc67821305]Etukäteen sovittavat (selvitettävät asiat)

Käytettäessä CCOW-standardin mukaista turvallisuuden varmistamista, pitää etukäteen selvittää seuraavat asiat:
· millä tavoin julkiset/salaiset avaimet luodaan
· miten niitä jaellaan

· mitä julkisen/salaisen avaimen algoritmia käytetään avainten luontiin
· mitä hash-algoritmia käytetään tiivisteen laskemiseen.

Näiden algoritmien on oltava keskenään yhteensopivia.

Avaimet voidaan luoda joko dynaamisina tai staattisina:				
Dynaaminen avainten luonti
· luodaan avainpari jokaiseen binding-prosessiin uudelleen
· parempi ja turvallisempi vaihtoehto kuin staattinen, koska avaimia ei tarvitse varastoida pysyvästi

Staattinen avainten luonti
· avainpari luodaan valmiiksi etukäteen ja tallennetaan turvalliseen paikkaan
· turvattomampi, koska avaimet pysyviä tallennettava jonnekin.

CCOW teknisissä määrittelyissä käytetään web/http-määrittelyssä julkisen avaimen luontiin RSA:ta ja hash-funktiona MD5:sta.

Lisäksi sovelluksen passcode-arvo on konfiguroitava etukäteen niin sovellukseen kuin kontekstinhallintaankin. Passcode on etukäteen asetettu arvo, jolla kontekstinhallinta tunnistaa sovelluksen. Passcode toimii siis yhteisenä salaisuutena ja on sovelluskohtainen.

[bookmark: _Toc67821306]Vaatimukset toteutukselle

Turvallisuuden toteuttaminen CCOW-standardin mukaisesti edellyttää seuraavien rajapintojen ja käytäntöjen toteuttamista:

Kontekstinhallinta:
· Toteuttaa SecureBinding-rajapinnan metodit
· InitializeBinding
· FinalizeBinding
· Toteuttaa SecureContextData-rajapinnan metodit
· Julkisen/salaisen avaimen tekniikka (esim. RSA)
· pitää luoda ja säilyttää (väliaikaisesti/ pysyvästi) oma avainpari
· pitää säilyttää sovellukselta saatu sovelluksen julkinen avain
· Hash-algoritmin valinta (esim. MD5)

LIITE 1 JATKUU
LIITE 1 JATKUU

· Sovellusten passcode-arvojen säilyttäminen turvallisesti
· ennalta konfiguroitava kontekstinhallintaan
· jokaisella sovelluksella oma passcode

Sovellus:
· Kutsuu SecureBinding-rajapinnan metodeja
· InitializeBinding
· FinalizeBinding
· Kutsuu SecureContextData-rajapinnan metodeja
· Julkisen/salaisen avaimen tekniikka (esim. RSA)
· pitää luoda ja säilyttää (väliaikaisesti/ pysyvästi) oma avainpari
· pitää säilyttää kontekstinhallinnalta saatu kontekstinhallinnan julkinen avain
· Hash-algoritmin valinta (esim. MD5)
· Oman passcode-arvojen säilyttäminen turvallisesti (joka on ennalta konfiguroitu kontekstinhallintaan ja jokaisella sovelluksella oma)

LIITE 2. Jatkokehitys.

[bookmark: _Toc67821307]1 Jatkokehitys

[bookmark: _Toc67821308]1.1 Pollaukset

Palvelinpohjaisessa ratkaisussa on otettava huomioon seuraavat kaksi web-tekniikasta seuraavaa ongelmaa:

· Mikäli kontekstinhallintapalvelussa on ongelmia, esim. palvelu itse kaatunut, palvelin on kaatunut, on sovelluksen osattava toimia ilman kontekstinhallintaa. Miten sovellus voi tarkistaa kontekstinhallintapalvelun toiminnan, muuten kuin saamalla virheilmoituksen palvelimelta kutsuessaan kontekstinhallintapalvelun metodeja?
· Mikäli kontekstinhallintaan liittyneessä sovelluksessa on ongelmia, esim. web-palvelimella oleva sovellus on kaatunut tai palvelin on kaatunut, muodostuu ongelmaksi kontekstinhallintapalveluun roikkumaan jäävät turhat sovellukset. Kontekstinhallintapalvelu mahdollisesti olettaa, että kontekstia pitää vielä pitää yllä, koska kaikki sovellukset eivät ole eronneet kontekstinhallinnasta. Miten kontekstinhallintapalvelu voi tarkistaa sovellusten olemassa olon?

[bookmark: _Toc67821309]1.1.1 Uusi metodi

Miten sovellus voi tarkistaa kontekstinhallintapalvelun toiminnan?

[bookmark: _Toc48981910][bookmark: _Toc49749277][bookmark: _Toc61768649]Yksi ratkaisu esitettyyn ongelmaan olisi määritellä uusi metodi, jolla sovellus voisi varmistaa kontekstinhallintapalvelun toiminnan. Kontekstinhallintapalvelu vastaisi metodiin esimerkiksi true/false-mekanismilla.

Toinen keino joka on toteutettavissa nykyisillä metodeilla, on kutsua GetItemValues-metodia. Jos kontekstinhallintapalvelu vastaa kutsuun, voi sovellus varmistua sen toiminnasta.

[bookmark: _Toc67821310]1.1.2 Aikakatkaisu

Miten kontekstinhallintapalvelu voi tarkistaa sovellusten olemassa olon?

Minimitason kontekstinhallinnan tavoitteena on pitää liikenne yksisuuntaisena eli ainoastaan sovellus kutsuu kontekstinhallintapalvelun metodeja - kontekstinhallinta ei kutsu sovelluksia.

Yksi vaihtoehto on määrittää kontekstinhallintaan aikaleima, johon määritellään kontekstin voimassaolo.

Vaihtoehtoja toteutukselle:
· Vakio
· Sovelluskohtainen
· Kontekstikohtainen
· Tietokohtainen

					LIITE 2 JATKUU
LIITE 2 JATKUU

Kysymyksiä:
· Onko aikaleiman asettamiseen tässä sitten jokin oma mekanismi?
· Asettaako asiakassovellus aikaleiman jotenkin (oma subjekti?)
· Tapahtuuko context managerissa sisäisesti (konfiguroimalla)?
· Onko asiakassovellukselle vapaaehtoinen?

Sovelluskohtaista aikakatkaisua olisi suositeltavaa toteuttaa ainakin käyttäjätunnuksesta vastaavan luotetun sovelluksen osalta. Luotettu sovellus osoittaisi toimivuutensa mahdollisimman tiheästi, jolloin sen aikakatkaisuarvo voitaisiin säätää mahdollisimman pieneksi. Jos luotetun sovelluksen osalta aikakatkaisu tulee vastaan, pitäisi kontekstinhallintapalvelun tuhota ylläpitämänsä konteksti. Näin käyttäjän oikeellisuus voitaisiin varmistaa tilanteessa, jossa luotettu sovellus kaatuu.

[bookmark: _Toc67821324]1.2 Työaseman identifioiminen

1.2.1 JoinCommonContextWithIp-metodin avulla

Työaseman identifioinnissa ovat ongelmana esimerkiksi NAT-osoitteet, jolloin eri työasemat saattavat näin näkyä kontekstinhallinnalle samana IP-osoitteena. Tähän voisi olla yksi ratkaisu käyttää JoinCommonContextWithIp-metodia. Tällöin kontekstinhallinta saisi metodin parametrina työaseman todellisen IP-osoitteen, jolla voisi yksilöidä työaseman. Tällöin on vain muistettava, että kontekstinhallintapalvelu saa käyttää työaseman todellista IP-osoitetta vain työaseman yksilöintiin.

[bookmark: _Toc67821325]1.2.2 Työaseman identifioiminen Context Management Registryn (CMR) avulla

Tässä kappaleessa kuvaillaan lyhyesti työaseman identifioiminen kontekstinhallintaympäristössä CCOW-standardin mukaisella tavalla käyttämällä Context Management Registry palvelua. CMR-palvelua ei ole mukana minimitoteutuksen määrityksissä.

[bookmark: _Toc67821326]1.2.2.1 Context Management Registry (CMR)

CMR-palvelun ainoa tehtävä on säilyttää CM:n osoitetta ja palauttaa osoite sitä tarvitseville sovelluksille. CMR-palvelun rajapinta on määritelty CCOW-standardissa. Kun palvelu on palauttanut osoitteen, voivat sovellukset kutsua CM komponenttia osoitteessa (http-viestillä) ja liittyä yhteiseen kontekstiin. Liittymiskutsun yhteydessä sovellus lähettää CM:lle oman ContextParticipant rajapinnan URL-osoitteen, jota CM käyttää kartoituskutsuja lähettäessään. Näin sekä CM, että osallistuva sovellus tietävät toistensa osoitteet ja voivat viestiä keskenään. Liittymiskutsun yhteydessä (JoinCommonContext) lähetettävä URL-osoite ei siis välttämättä ole sen työaseman osoite, jolla sovellusta käytetään, eikä tätä osoitetta ole tarkoitettu työaseman identifioimiseen. Esimerkiksi web-sovelluksissa tämä osoite on web-palvelimen, ei työaseman osoite.

CMR on työasemalle asennettava komponentti, joka toteuttaa ContextManagementRegistry –rajapinnan. Tämä rajapinta määrittelee vain yhden metodin (Locate), joka on määrittely CCOW-standardissa (taulukko 1).
LIITE 2 JATKUU
LIITE 2 JATKUU

Taulukko 1. Locate-metodi.

	HTTP Request Message

	Argument Name
	Data Type
	Comment

	interface
	string
	“ContextManagementRegistry”

	method
	string
	“Locate”

	componentName
	string
	The name of the component to locate. Currently, only the value CCOW.ContextManager shall be used. (In the future, the registry may be capable of locating other types of components.) The value for this parameter is not case sensitive.

	Version
	string
	The version of the CMA specification that the component implements. Currently, only the value 1.4 shall be used. The value for this parameter is not case sensitive.

	DescriptiveData
	string
	This optional parameter is additional data used to describe the component of interest. The allowed values and interpretation of this parameter depends upon the type of component to be located.

	ContextParticipant
	string
	Participant’s URL. If this URL is for an HTTPS connection, the output componentURL will also be for an HTTPS connection, otherwise, the output URL will be for a normal HTTP connection.

	HTTP Reply Message

	componentUrl
	string
	The URL of the desired component.

	ComponentParameters
	string
	Optional parameters that if present shall be included with every call to the located component. If the call is sent using an HTTP GET, a ”?” shall be appended to componentURL followed by the componentParameter string and any other method specific parameters. If the call is sent using an HTTP POST, the parameters shall be sent as part of the body of the message along with any other method specific parameters. The component parameters are opaque and should not be interpreted by a client.

	Site
	string
	The domain name (e.g., www.duke.edu) of the site or organization that is being served by the located component (i.e., referenced by componentURL).

	Possible Exceptions

	UnableToLocate
	The registry could not locate the specified component.

Taulukosta on yliviivattu ne parametrit, jotka eivät ole tarpeellisia minimitoteutusta ajatellen. CMR-palvelulle on CCOW-standardissa varattu osoite http://localhost:2116, johon lähetettäviä kutsuja CMR kuuntelee. Kuvassa 3 on selvitetty CMR-palvelun toiminta sovellusta avattaessa.

[bookmark: _Toc67821327]1.2.2.2 CMR:n hyödyntäminen työaseman identifioinnissa

Työaseman identifioinnin toteuttaminen CMR:n avulla perustuu taulukossa 1 esitellyn Locate-metodin palauttaman ei-pakollisen ComponentPararameters -parametrin hyödyntämiseen (merkitty sinisellä). ComponentParameters määrittelee yhden tai useamman parametrin, jotka context manageria kutsuvan sovelluksen on aina liitettävä jokaisen suorittamansa kutsun loppuun (esim. GetItemValues). Jos CMR palvelu määriteltäisiin palauttamaan tässä parametrissa sen työaseman

					LIITE 2 JATKUU
LIITE 2 JATKUU

IP-osoite tai jokin keinotekoinen ”desktop id” -tunnus, jolla palvelua parhaillaan ajetaan, tulisi kutsuvien sovellusten sen jälkeen liittää tämä tunnus kaikkiin context managerin kutsuihinsa. Tällä menetelmällä saavutettaisiin seuraavat edut:
· web-sovellusten ei tarvitse enää selvittää työaseman tunnusta erikseen ja välittää sitä context managerille. Samalla ehdotettu JoinCommonContextWithIp –metodi käy tarpeettomaksi.
· työpöydän identifioiminen helpottuu tilanteessa, jossa työpöydällä on avoinna sekä perinteisiä lomakeohjelmia, että web-sovelluksia. Kaikki sovellukset, jotka ovat hakeneet viittauksen (URL) työpöydän käyttämään context manageriin kyseisen työpöydän CMR-palvelulta, käyttävät samoja lisäparametreja kutsuissaan.
· työpöydän käyttämä context manager –instanssi voidaan identifioida yksiselitteisesti tällä tunnisteella ja näin myös kaikki työasemalla ajettavat sovellukset osataan liittää oikeaan kontekstiin.

Kuvassa 3 on esitelty käyttötapaus, jossa työaseman identifiointiin käytetään CMR-palvelua.

 (
Appletti suorittaa esim. kutsun:
http://localhost:2116?interface=ContextManagementRegistry&method=locate
Appletti saa vastauksen:
ComponentUrl=http://someurl.fi/CM&
ComponentParameters=ParticipantIP%3D127.0.0.1
)

 (
Palvelin x
) (
Web-palvelin
) (
 Työasema
)
 (
Web-sovellus
) (
Context Manager
) (
Asiakas
(+ CMR-palvelu)
)

 (
”Avaa sovellus”
)

 (
Aloitussivu + applet
)

 (
CM URL + ComponentParameters
)
 (
JoinCommonContext + ComponentParameters
)

 (
Esim. kutsu:
http://someurl.fi/CM?interface=ContextManager&method=JoinCommonContext&
applicationName=webapp&
ParticipantIP=127.0.0.1
)

Kuva 3. CMR-palvelun toiminta.
			
					LIITE 2 JATKUU
LIITE 2 JATKUU

Eri vaiheet kuvan 3 kutsuissa ovat:
1. Käyttäjä avaa selaimella käytettävän web-sovelluksen, jota ajetaan erillisellä palvelimella.
2. Web-sovellus lähettää aloitussivun asiakkaalle. Tämän sivun mukana voidaan lähettää esim. appletti, joka suoritetaan asiakaskoneella.
3. Appletti lähettää Locate-kutsun CMR-palvelulle, josta palautuu työaseman käyttämän CM:n URL-osoite, sekä lisäksi ComponentParameters-merkkijono, jossa määritellään parametrit, jotka sovelluksen on tästä edespäin aina lisättävä context manager –kutsuihinsa. Kuvan 3 esimerkissä ComponentParameter-merkkijonon arvoksi on asetettu ParticipantIP –niminen tieto, jolle on annettu arvoksi sen työaseman ip (huom. %3D on ascii koodi ”=” -merkille), jolla CMR-palvelu sijaitsee.
4. Osoitteen saatuaan appletti päivittää aloitussivun tai lataa uuden sivun lähettämällä http-viestin palvelimelle, josta sivu ladattiin. Tämän viestin mukana palvelimelle lähetetään myös CMR:ltä saatu URL-osoite, sekä ComponentParameters merkkijono.
5. Web-sovellus kutsuu context manageria saamastaan URL-osoitteesta ja liittää kutsuun myös ComponentParametrs-merkkijonon, joka tässä esimerkissä on ParticipantIP=127.0.0.1. Nyt työaseman yksilöivä IP-osoite on myös CM:n tiedossa.

Tämän jälkeen työpöydällä voidaan avata muitakin sovelluksia ja niin kauan, kuin kaikki sovellukset käyttävät kyseisen työaseman CMR-palvelua ennen liittymistään yhteiseen kontekstiin, pystyy context manager identifioimaan millä työasemalla kutsuvaa sovellusta ajetaan. Näin ollen on ratkaistu työasemien identifioinnin ongelma.

[bookmark: _Toc67821328]1.2.2.3 CMR:n toteuttaminen web-sovelluksiin

Context Management Registryn toteuttaminen vaatisi ainakin seuraavia asioita (web-sovelluksissa):
· Työasemalla ajettavan, CMR-rajapinnan toteuttavan palvelun, joka kuuntelee porttia 2116. Palvelu voitaneen toteuttaa yksinkertaisimmillaan esimerkiksi Java sockettina, joka purkaa locate-kutsun, sekä palauttaa työaseman käyttämän context managerin osoitteen ja työaseman ip:n (tai muun tunnisteen) ComponentParameters parametrissa. Työaseman käyttämän context managerin osoite ja tarvittaessa työaseman IP-osoite voidaan säilyttää esim. työasemalle tallennettavassa xml-tiedostossa, jona CMR-palvelu käynnistyessään tutkii.
· Sovelluksen käynnistyssivulle asennettava applet, joka sovelluksen käynnistyessä ladataan asiakaskoneelle. Appletin on pystyttävä suorittamaan Locate-kutsu CMR-palvelulle ja lähettämään kutsun paluuarvo takaisin sovellukselle (esim. uudelleenohjaamalla selain toiselle sivulle ja sisällyttämällä parametrit uudelleenohjauskutsuun). Tässä on huomioitava se, että appletien oikeudet käyttää asiakaskoneen palveluja ovat varsin rajatut turvallisuussyistä. Applet ei esimerkiksi oletusarvoisesti saa ottaa yhteyttä mihinkään muuhun palvelimeen, kuin siihen, josta se on ladattu (ei esim. CMR-palveluun). Tämän takia on käytettävä allekirjoitettuja (signed applets) appleteja, joiden suorittamiseen työasemalla annetaan erikseen lupa.

Perinteisissä työasemalla ajettavissa (ei-web) sovelluksissa CMR:n käyttö on helpompaa, koska kutsu voidaan lähettää suoraan CMR-palvelulle ilman applettien käyttöä.

					LIITE 2 JATKUU
LIITE 2 JATKUU

1.2.3 JoinCommonContext?

JoinCommonContextWithIp-metodissa työaseman identifiointi perustuu työasemakohtainen IP-tunnus selvittämiseen. IP-osoitteissa ongelmaksi muodostuu mahdollisten NAT-osoitteiden käyttö. NAT-muunnosten takana olevat sovellukset eivät näy palvelimelle työpöydän varsinaisella IP-osoitteella vaan eri työasemat saattavat näkyä kontekstinhallintapalvelimelle samana IP-osoitteena.

Tämä ongelma voidaan ratkaista mm. seuraavilla tavoilla:
· Lisätään uusi metodi (esim. JoinCommonContextWithSessioKey), jossa työasemaa ei tunnisteta IP-osoitteella, vaan istuntotunnuksella (esim. sessionKey). IP-osoitteen sijasta välitetään työpöydän yksilöivä istuntotunnus, jonka ydinjärjestelmä tai muu kontekstin alun perin luova järjestelmä luo ja välittää jollain tavalla muille sovelluksille. Esimerkiksi selaintekniikkaa käyttäville sovelluksille istuntotunnus voitaisiin välittää url:n osana. Kaikkien sovellusten on käytettävä tätä istuntotunnusta uuden metodin parametrina liittyessään kontekstinhallintaan.

				HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“JoinCommonContexWithSessionKey”

	applicationName
	string
	

	sessionKey
	string
	Client's sessionKey

	HTTP Reply Message

	participantCoupon
	long
	

· Laajennetaan JoinCommonContext-metodia optionaalisilla parametreilla. Tällöin JoinCommonContext-metodille välitetään optionaalinen parametri riippuen siitä, mitä työpöydän yksilöimistapaa halutaan käyttää. Parametrina voisivat olla esim. JoinCommonContextWithIp-metodin hostAddress-parametri, jolloin työpöydän tunnistamiseen käytettäisiin työaseman IP-tunnusta tai sessionKey-parametri, jolloin työpöydän tunnistamiseen käytettäisiin erikseen luotavaa istuntotunnusta. Eli samaa JoinCommonContext-metodia voisi kutsua eri parametreilla riippuen siitä, miten työpöytä halutaan yksilöidä. Tämän ratkaisun etuna on laajennettavuus uusilla optionaalisilla parametreille, jos joskus keksitään vielä jokin muukin työpöydän identifiointitapa. Tämä tapa muistattaa myös CCOW-standardin mukaista tapaa, joka on esitelty liitteen 2 kappaleessa 1.2 Työaseman identifioiminen.

					LIITE 2 JATKUU

LIITE 2 JATKUU

				HTTP Request Message

	Argument Name
	Data Type
	Comment

	Interface
	string
	“ContextManager”

	Method
	string
	“JoinCommonContext”

	applicationName
	string
	

	Optional Arguments
	
	

	hostAddress
	string
	Client's tcp/ip address

	sessionKey
	string
	Client's sessionKey

	HTTP Reply Message

	participantCoupon
	long
	

Käytettäessä JoinCommonContext-metodia optionaalisilla parametreilla, poistuu myös tarve JoinCommonContextWithIp-metodille. Metodin karsimisessa on huomioitava se, että JoinCommonContextWithIp-metodia on jo käytetty toteutuksissa. Määrittelyssä voitaisiin kehottaa jatkossa käyttämään yleistä JoinCommonContext-metodia ja merkitä, että JoinCommonContextWithIp-metodi on ”deprecated”, joka tarkoittaa. Palvelinten tulisi kuitenkin tukea JoinCommonContextWithIp-metodia, mutta metodin kutsu voitaisiin ohjata edelleen yleiskäyttöisemmän JoinCommonContext-metodin käsiteltäväksi.

1.3 Alueellisen tason ratkaisun vaatimukset kontekstinhallinnalle

Tässä luvussa esitetyt HL7-yhdistyksen jäseniltä saadut kommentit koskevat kontekstipalvelun käyttöä alueellisissa ratkaisuissa ja erityisesti alueellisen kontekstinhallinnan tietoturvavaatimuksia. Varsinaisessa dokumentissa esitetyn kontekstinhallintaratkaisun lähtökohtana on ollut organisaation sisäinen käyttö ja matala toteutuskynnys olemassa oleviin sovelluksiin.

1.3.1 Kertakirjautuminen (single sign-on)

Etenkään alueellisissa ratkaisuissa kontekstinhallintaa ei voi käyttää kertakirjautumis-tarkoituksiin, jos ratkaisu ei toteuta tiettyjä nimettyjä turvavaatimuksia. Riskinä on, että käyttäjäkontekstin väärentänyt osapuoli voi toimia järjestelmissä jonkun muun käyttäjän nimissä. Kertakirjautumisen turvavaatimukset on määriteltävä yksikäsitteisesti ja kirjattava kontekstinhallinnan standardiin.

Näitä vaatimuksia ovat
a) Kontekstinhallinnan on tunnistettava luotettavasti käyttäjäkontekstia asettava järjestelmä.
b) Kontekstinhallinnan on tunnistettava luotettavasti käyttäjäkontekstia hakeva järjestelmä.
c) Järjestelmän on tunnistettava luotettavasti kontekstinhallinta, johon se on yhteydessä.
d) Käyttäjäkontekstin asettaminen nimettyjen sovellusten käyttöön. Tässä kohdin on ratkaistava:
· määritelläänkö kontekstinhallintaan etukäteen, mikä sovellus saa hakea käyttäjäkontekstia?

LIITE 2 JATKUU
LIITE 2 JATKUU

· määritelläänkö kontekstinhallintaan etukäteen, mikä sovellus saa asettaa käyttäjäkontekstia?
· vai määritteleekö asettava sovellus jollain parametrilla ne sovellukset, jotka saavat hakea sen asettaman käyttäjäkontekstin?

Selaimen tai muun työasemalla suoritettavan clientin tietoturva voi vaarantua monilla tavoin (esim. nuuskijaohjelmien kautta), mutta client-sovellusten ja niiden infrastruktuurin turvaaminen on rajapintamäärityksen ulkopuolella. Nykyinen kontekstinhallintamääritys ei oleta, että käyttäjäkontekstitieto siirtyy web-palvelimelta selaimeen. Se nojautuu siihen, että web-palvelimella toimiva sovellus käyttää clientin (selaimen) osoitetta samalta työasemalta tulevien (saman käyttäjän) sovellusten yhdistämiseksi samaan kontekstiin.

1.3.2 Käyttäjätunnus ja geneerinen id

Geneerisen id:n käyttö siten, että kaikki sovellukset pystyvät luotettavasti mappaamaan siihen omat käyttäjätunnuksensa, tulee aiheuttamaan suuria implementaatio-ongelmia. Geneerisen id:n siirto on joka tapauksessa sovittava toimijoiden välillä. Geneeristen id-tunnusten mappaaminen sovelluksien omiin käyttäjätunnuksiin voidaan toteuttaa mm. ”oppivalla integraatiolla”. Tällainen tapa voitaisiin kuvata tulevaisuudessa standardissa. Myös muunlaisen standardiratkaisun kehittäminen erillisten käyttäjähakemistojen mappaukseen on mahdollista, ja tiettävästi sellainen on suunnitteilla alueellista kontekstinhallintaa hyödyntämään tulevissa ohjelmistoissa. Tämän työn toivotaan laajentavan nykyistä määrittelyä avoimella tavalla.

Toimikortit eivät ilmeisesti ratkaise geneeristen id-tunnusten käyttöä. Niiden ongelmana on varmenteiden vanheneminen. Geneeristen tunnusten ei tulisi vanhentua silloin, kun toimikortin varmenne tai siihen liittyvät ylemmän tason varmenteet vanhenevat.

1.3.3 Muut kontekstitiedot ja turvallisuus

Kontekstinhallinnan eri osapuolet on tunnistettava luotettavasti, sillä kontekstitieto voi hyvinkin olla arkaluonteista, ja sitä tulee käsitellä sellaisena. Näin seuraavat kohdat on ratkaistava:
· salataanko aina kaikki tiedot?
· käytetäänkö kaikkiin kontekstitietoihin samoja vaatimuksia kuin käyttäjäkontekstiinkin?

Kontekstitiedon turvallisuus koskee paitsi salausta myös kontekstitiedon ylläpitoa (kontekstitiedon asettaminen) ja hyväksikäyttöä (kontekstitiedon hakeminen). Näin on
· määriteltävä, mitkä sovellukset saavat hakea ja asettaa kontekstitietoja
· ratkaistava, miten tarkaksi määrittely viedään, esim. tietyt sovellukset saavat hakea vain tiettyjä tietoja ja tietyt sovellukset saavat asettaa vain tiettyjä tietoja?

LIITE 2 JATKUU
LIITE 2 JATKUU

1.3.4 Turvallisuusratkaisun kehittäminen

· onko CCOW-protokolla turvallisista rajapinnoista sellainen, josta ratkaisua voisi lähteä rakentamaan?
· ratkaisussa huomioitava seuraavia kohtia:
· Passcodeen perustuva ratkaisu aiheuttaa turhaa ylläpitotyötä asennusvaiheessa ja nostaa esille kysymyksen passcoden generoimisesta ja laadusta
· Passcoden käyttö edellyttää, että protokollan molemmat osapuolet käyttävät samaa passcodea. Tämä vaatii passcoden turvallisen siirtämisen tai konfiguroinnin molempien osapuolten systeemiin. Voidaan kuitenkin esittää kysymys, että jos passocde konfiguroidaan molemmille osapuolille sen vuoksi, että voidaan varmistua osapuolten julkisen avaimen luotettavuudesta, niin miksi ei voitaisi konfiguroida myös osapuolten julkisia avaimia valmiiksi. Tällöin passcodea ei tarvitse käyttää ja molemmillla osapuolilla on toisen osapuolen julkinen avain konfiguroituna ja siihen voidaan luottaa. Luottamus tarkistetaan tällöin vertaamalla konfiguroitua julkista avainta protokollassa tulevaan julkiseen avaimeen.
· CA:n käyttö. Jos turvallisuusratkaisu käyttää CA:ta myös muiden julkisten avainten varmentamisessa, tulisi sitä käyttää myös tässä protokollassa.
· Tavallisempaa kuin CCOW-protokolla on yksinkertaisesti käyttää standardivarmenteita ja tallentaa ne (julkisine avaimineen) molemmin puolin - ja yksityinen avain vielä omistajansa key storeen.
· Kontekstitietojen jatkuva allekirjoittaminen on tarpeetonta, kun osapuolet voidaan tunnistaa luotettavasti näillä varmenteilla (mahdollisen uuden protokollan eri vaiheet määriteltävä).
· Yksinkertaisinta on luetella varmentajat, joiden varmenteita voidaan käyttää. Standardivarmenteet sisältävät tiedot käytetyistä algoritmeista, ja vakio-ohjelmat pystyvät toimimaan niiden kanssa ilman suurempia ongelmia.
· Ratkaistava
· kuka on varmentaja?
· miten tämä varmenteiden varmentaminen on tarjolla?
· muut käytännöt liittyen turvallisuus-protokollaan?

LIITE 3. Minimitoteutuksen erot CCOW-standardiin

Kontekstimuutosten toteuttamiseksi minimitoteutuksessa context managerin tarvitsee toteuttaa vain kontekstinhallintaan liittymisessä ja siitä eroamisessa, sekä kontekstin tietosisällön käsittelyssä tarvittavat metodit. Tiedon käsittely tapahtuu yksinkertaisilla get/set –metodeilla. Context manager ei kutsu osallistuvia sovelluksia (ei CCOW-standardin ilmoituksia kontekstin muutoksista tai kartoituksen tuloksista), vaan konteksti haetaan ainoastaan käyttäjän niin halutessa esim. päivityspainiketta klikkaamalla. Tällainen ratkaisu yksinkertaistaa context managerin toteutusta huomattavasti.

Minimitoteutuksen erot CCOW-standardiin:
· Osallistuvien sovellusten ei tarvitse toteuttaa uusia rajapintoja (CCOW-standardin ContextParticipant), koska context manager ei koskaan kutsu sovelluksia.
· Context managerin tarvitsee toteuttaa vain kontekstinhallintaan liittymisessä tarvittavat join / leave ja kontekstin tietosisällön käsittelyssä tarvittavat get/set tyyppiset metodit rajapinnassaan.
· Kartoitusvaihetta (survey phase) ei tarvitse suorittaa, mikä yksinkertaistaa komponentin toteutusta huomattavasti.
· Sovellukset eivät päivitä tilaansa automaattisesti, vaan ainoastaan käyttäjän niin halutessa. Tämä voi olla jopa toivottu ominaisuus verrattuna CCOW-standardin automaattiseen päivitykseen.
· Toteutettavaksi jää minimaalinen määrä rajapintoja. Periaatteessa riittävät seuraavat CCOW-standardin rajapinnat (ja nämäkin karsittuina versioina):
· ContextManager-rajapinta: kontekstinhallintaan liittyminen ja siitä eroaminen
· ContextData-rajapinta: kontekstin tiedon käsittely.
· Palvelinpohjaiseen määritykseen lisätty metodi JoinCommonWithIp, jota ei löydy CCOW-standardista
· Turvallisuutta ei ole ratkaistu standardi-tavalla. CCOW-standardi toteuttaa turvallisuuden käyttämällä liitteessä 1 kuvatulla tavalla.

Tilanteessa, jossa minimitason määritysten mukaisesti toteutettu asiakassovellus haluaisi käyttää CCOW-standardin mukaista koordinaattoria, ovat ongelmina:
· Sovelluksesta puuttuu ContextParticipant-rajapinta. Näin koordinaattori ei voi ilmoittaa sovellukselle kontekstin muutoksista, eikä kartoittaa haluaako sovellus vaihtaa kontekstia vai ei.
· Sovellus ei voi hakea kontekstia, koska se ei ole em. kohdassa kuvatusta syystä ilmoittanut koordinaattorille olevansa halukas vaihtamaan kontekstia. Sovelluksella ei ole myöskään antaa koordinaattorin vaatimaa contextCoupon-tunnistetta, sillä tämä tunniste puuttuu kokonaan minimitason kontekstinhallintaratkaisun metodeista.
· Sovellus ei voi asettaa kontekstia, sillä CCOW-standardissa kontekstin saa asettaa vasta, kun on saanut koordinaattorilta uuden contextCoupon-tunnisteen ehdotettavalle uudelle kontekstille. Asettaminen vaatii myös kahden minimitason määrityksistä karsitun metodin käyttöä.

LIITE 3 JATKUU
LIITE 3 JATKUU

Vastaavasti tilanteessa, jossa CCOW-yhteensopiva asiakassovellus haluaisi käyttää minimitason määritysten mukaista koordinaattoria, ovat ongelmina:
· CCOW-yhteensopiva sovellus olettaa kartoitusvaihetta. CCOW-standardin mukainen sovellus ei hae kontekstista tietoja ennen kuin koordinaattori on ilmoittanut kontekstin vaihtuneen. Minimitason kontekstinhallintaratkaisussa koordinaattoriin ei ole toteutettu sovelluksen ContextParticipant-rajapinnan kutsumista ja se ei näin ilmoita kontekstin muutoksista.
· CCOW-standardin mukainen sovellus ei myöskään voi asettaa kontekstia. Ennen kuin se voi asettaa kontekstin, on sen kutsuttava minimitason määrityksistä puuttuvaa metodia ja lopetettava kontekstin asetus metodiin, jota ei ole toteutettu minimitason määritysten mukaiseen koordinaattoriin.

HL7 Finland	
image3.wmf
Sovellus

Kontekstinhallinta

JoinCommonContext

 (

Sovellus

)

participantCoupon

=98765

GetItemValues

 (

98765,

User.Id.Logon

)

itemValues

=

mituomai

SetItemValues

 (

98765,

Patient.Id.NationalIdNumber

, 230474-

xxxx

)

LeaveCommonContext

 (

98765

)

image4.wmf
Sovellus

http

-

yhteyskomponetti

Web-

sovellus

http-

yhteyskomponetti

WWW-

palvelin

Kontekstinhallinta

-

palvelutoteutus

http-

keskustelija

http

http

http

image5.emf

image1.jpeg

image2.wmf
Context Manager

Sovellus

 1

(web/

työasema

)

Sovellus

 x

(web/

työasema

)

CM

CD

Rajapinnat

CM =

ContextManager

CD =

ContexData

Yhteinen

konteksti

